二、重點(diǎn)與難點(diǎn): 直線的傾斜角、斜率的概念和公式.
三、用具:計(jì)算機(jī)
教學(xué)方法:?jiǎn)l(fā)、引導(dǎo)、討論.
四、教學(xué)過(guò)程
(一)、直線的傾斜角的概念
我們知道, 經(jīng)過(guò)兩點(diǎn)有且只有(確定)一條直線. 那么, 經(jīng)過(guò)一點(diǎn)P的直線l的位置能確定嗎? 如圖, 過(guò)一點(diǎn)P可以作無(wú)數(shù)多條直線a,b,c, …易見(jiàn),答案是否定的.這些直線有什么聯(lián)系呢?
(1)它們都經(jīng)過(guò)點(diǎn)P. (2)它們的‘傾斜程度’不同. 怎樣描述這種‘傾斜程度’的不同?
引入直線的傾斜角的概念:
當(dāng)直線l與x軸相交時(shí), 取x軸作為基準(zhǔn), x軸正向與直線l向上方向之間所成的角α叫做直線l的傾斜角.特別地,當(dāng)直線l與x軸平行或重合時(shí), 規(guī)定α= 0°.
問(wèn): 傾斜角α的取值范圍是什么? 0°≤α<180°.
當(dāng)直線l與x軸垂直時(shí), α= 90°.
因?yàn)槠矫嬷苯亲鴺?biāo)系內(nèi)的每一條直線都有確定的傾斜程度, 引入直線的傾斜角之后, 我們就可以用傾斜角α來(lái)表示平面直角坐標(biāo)系內(nèi)的每一條直線的傾斜程度.
如圖, 直線a∥b∥c, 那么它們 的傾斜角α相等嗎? 答案是肯定的.所以一個(gè)傾斜角α不能確定一條直線.
確定平面直角坐標(biāo)系內(nèi)的一條直線位置的幾何要素: 一個(gè)點(diǎn)P和一個(gè)傾斜角α.
(二)直線的斜率
一條直線的傾斜角α(α≠90°)的正切值叫做這條直線的斜率,斜率常用小寫字母k表示,也就是k = tanα
⑴當(dāng)直線l與x軸平行或重合時(shí), α=0°, k = tan0°=0;
⑵當(dāng)直線l與x軸垂直時(shí), α= 90°, k 不存在.
由此可知, 一條直線l的傾斜角α一定存在,但是斜率k不一定存在.
例如, α=45°時(shí), k = tan45°= 1;
α=135°時(shí), k = tan135°= tan(180°- 45°) = - tan45°= - 1.
學(xué)習(xí)了斜率之后, 我們又可以用斜率來(lái)表示直線的傾斜程度.
(三) 直線的斜率公式:
給定兩點(diǎn)P1(x1,y1),P2(x2,y2),x1≠x2,如何用兩點(diǎn)的坐標(biāo)來(lái)表示直線P1P2的斜率?
可用計(jì)算機(jī)作動(dòng)畫演示: 直線P1P2的四種情況, 并引導(dǎo)學(xué)生如何作輔助線,共同完成斜率公式的推導(dǎo).(略)
斜率公式: 對(duì)于上面的斜率公式要注意下面四點(diǎn):
(1) 當(dāng)x1=x2時(shí),公式右邊無(wú)意義,直線的斜率不存在,傾斜角α= 90°, 直線與x軸垂直;
(2)k與P1、P2的順序無(wú)關(guān), 即y1,y2和x1,x2在公式中的前后次序可以同時(shí)交換, 但分子與分母不能交換;
(3)斜率k可以不通過(guò)傾斜角而直接由直線上兩點(diǎn)的坐標(biāo)求得;
(4) 當(dāng) y1=y2時(shí), 斜率k = 0, 直線的傾斜角α=0°,直線與x軸平行或重合.
(5)求直線的傾斜角可以由直線上兩點(diǎn)的坐標(biāo)先求斜率而得到.
(四)例題:
例1 已知A(3, 2), B(-4, 1), C(0, -1), 求直線AB, BC, CA的斜率, 并判斷它們的傾斜角是鈍角還是銳角.(用計(jì)算機(jī)作直線, 圖略)
分析: 已知兩點(diǎn)坐標(biāo), 而且x1≠x2, 由斜率公式代入即可求得k的值;
而當(dāng)k = tanα<0時(shí), 傾斜角α是鈍角;
而當(dāng)k = tanα>0時(shí), 傾斜角α是銳角;
而當(dāng)k = tanα=0時(shí), 傾斜角α是0°.
略解: 直線AB的斜率k1=1/7>0, 所以它的傾斜角α是銳角;
直線BC的斜率k2=-0.5<0, 所以它的傾斜角α是鈍角;
直線CA的斜率k3=1>0, 所以它的傾斜角α是銳角.
例2 在平面直角坐標(biāo)系中, 畫出經(jīng)過(guò)原點(diǎn)且斜率分別為1, -1, 2, 及-3的直線a, b, c, l.
分析:要畫出經(jīng)過(guò)原點(diǎn)的直線a, 只要再找出a上的另外一點(diǎn)M. 而M的坐標(biāo)可以根據(jù)直線a的斜率確定; 或者k=tanα=1是特殊值,所以也可以以原點(diǎn)為角的頂點(diǎn),x 軸的正半軸為角的一邊, 在x 軸的上方作45°的角, 再把所作的這一邊反向延長(zhǎng)成直線即可.
略解: 設(shè)直線a上的另外一點(diǎn)M的坐標(biāo)為(x,y),根據(jù)斜率公式有, 1=(y-0)/(x-0)
所以 x = y,可令x = 1, 則y = 1, 于是點(diǎn)M的坐標(biāo)為(1,1).此時(shí)過(guò)原點(diǎn)和點(diǎn)
M(1,1), 可作直線a. 同理, 可作直線b, c, l.(用計(jì)算機(jī)作動(dòng)畫演示畫直線過(guò)程)
(五)練習(xí): P91 1. 2. 3. 4.
本文來(lái)自:逍遙右腦記憶 http://m.yy-art.cn/gaoyi/60547.html
相關(guān)閱讀:直線與平面的位置關(guān)系