平行向量的坐標表示

編輯: 逍遙路 關鍵詞: 高二 來源: 高中學習網(wǎng)



泗縣三中教案、學案:平行向量的坐標表示

年級高一

學科數(shù)學

平行向量的坐標表示

授時間

撰寫人

學習重點

向量平行的坐標表示及直線上點的坐標的求解.

學習難點

向量平行的坐標表示及應用

學 習 目 標

1. 理解用坐標表示的兩個向量共線條; 2. 會根據(jù)向量的坐標,判斷向量是否共線.

教 學 過 程

一 自 主 學 習

復習: ⑴若點 、 的坐標分別為 , 那么向量 的坐標為 . ⑵若 ,則 , 假設 ,其中 ,若 共線,當且僅當存在實數(shù) ,使 ,用坐標該如何表示這兩個向量共線呢? 新知:通過運算,我們得知當且僅當 時,向量 共線.

二 師 生 互動

例1 已知 , ,且 ,求

變式訓練1:已知平面向量 , ,且 ,則 等于

例2 向量 , , ,當 為何值時, 三點共線.

變式:已知 , , ,求證: 、 、 三點共線.

思考題:設點P是線段P1P2上的一點, P1、P2的坐標分別是(x1,y1),(x2,y2). (1) 當點P是線段P1P2的中點時,求點P的坐標; (2) 當點P是線段P1P2的一個三等分點時,求點P的坐標.

三 鞏 固 練 習

1. 已知向量 , ,則 與 的關系是( ) A.不共線 B.相等 C.方向相同 D.共線 2. 已知 三點共線,且 ,若 點橫坐標為 ,則 點的縱坐標為( ) A. B. C. D. 3. 點 關于點 對稱點坐標為( ) A. B. C. D. 4. 已知 , ,若 與 平行,則 的值為 . 5. 已知 為 邊 上的一點,且 ,則 分 所成的比為 . 6.已知 = +5 , =-2 +8 , =3( - ),則( ) A. A、B、D三點共線 B .A、B、C三點共線 C. B、C、D三點共線 D. A、C、D三點共線 7.若向量 =(-1,x)與 =(-x, 2)共線且方向相同,則x為________. 8.設 , , ,且 ,求角 .

四 后 反 思

五 后 鞏 固 練 習

1. 已知 四點坐標分別為 , ,試證明:四邊形 是梯形.

2. 已知點 ,點 在直線 上,且 ,求 的坐標.





本文來自:逍遙右腦記憶 http://m.yy-art.cn/gaoer/41210.html

相關閱讀:平面向量數(shù)量積的坐標表示、模、夾角