昆明滇池中學2013―2014學年上學期期末考高二數(shù)學(理科) 試卷一、選擇題:本大題共12小題,每小題3分,共36分。在每小題給出的四個選項中,只有一項是符合題目要求的。1. 拋物線的焦點坐標是( 。〢.(4,0)B.(- 4,0) C.(2,0) D.(- 2,0).向量a=(2x,1,3),b=(1-2y9),若a與b共線,則 ( )A.x=1,y=1 B.x=,y=-C.x=,y=- D.x=-,y=. 已知兩條直線,兩個平面,給出下面四個命題:① ②③ ④其中正確命題的序號是 ) A.①③ B.②④ C.①④ D.②③4.與正方體各面都相切的球的表面積與該正方體的表面積之比為( )A. B. C. D. 5. 已知橢圓兩焦點坐標分別是,,并且經(jīng)過點,則橢圓的標準方程為 ( ) A. B. C. D.6.的焦點到漸近線的距離為( )A. 2 B. C. D. 17.在長方體ABCD-A1B1C1D1中,AB=BC=2,AA1=1,則AC1與平面ABCD所成角的余弦值為 ( ).A. B. C. D.8.如圖所示,空間四邊形OABC中,=a,=b,=c, 點M在OA上,且=2,N為BC中點,則等于 ( )A. a-b+cB. -a+b+cC. a+b-cD. a+b-c的焦點在軸上,長軸長是短軸長的兩倍,則的值為( )A.B. C. 2D.410.過拋物線的焦點作直線l交拋物線于A、B兩點,若線段AB中點的橫坐標為3,則等于A.4 B.6 C.8 D.10 11.中,,,,如圖所示,若將繞旋轉一周,則所形成的旋轉體的體積是( ) A. B. C. D. 12.如圖F1、F2分別是橢圓(a>b>0)的兩個焦點,A和B是以O為圓心,以OF1為半徑的圓與該左半橢圓的兩個交點,且△F2AB是等邊三角形,則橢圓的離心率為 ( ) A. B. C. D.-1的正方體中, 與所成的角為 。 14.已知雙曲線的離心率為2,焦點與橢圓的焦點相同,那么雙曲線方程為________.15. 已知雙曲線的兩個焦點為F1、F2,點M在雙曲線上,若?=0,則點M到x軸的距離為_________.16.如圖為正方體,下面結論中正確的結論是________.(把你認為正確的結論都填上 填)①∥平面;⊥平面;過點與異面直線AD和成90°角的直線有2條;的體積.,求出其頂點、焦點坐標及離心率。18.8分)已知一個幾何體的三視圖如下,試求它的表面積和體積.(單位:cm) 19.(本小題滿分8分)已知四棱錐P-ABCD,底面ABCD是°,邊長為的菱形,又,點M、N分別是棱AD、PC的中點. (1)證明:DN//平面PMB; (2)證明:BMPA.20.8分)過拋物線的焦點,作傾斜角為的直線交拋物線于P,Q兩點,O為坐標原點,POQ的面積..10分)如圖,正三棱柱ABC-A1B1C1的所有棱長都為2,D為CC1中點.求二面角1-D-1的余弦值;求點C1到平面A1BD的距離.22.(本小題滿分10分)已知動點P與平面上兩定點連線的斜率的積為定值.(1)求點的軌跡方程;與橢圓交于C、D兩點.問:是否存在k的值,使以CD為直徑的圓過E點?請說明理由.昆明滇池中學2013―2014學年上學期期末考高二數(shù)學(理科) 參考答案一、選擇題題號123456789101112答案DCCDABCBACAD二、填空題13. 14. 15. 16.①②④三、解答題17. 解:橢圓的標準方程為:頂點坐標為,焦點坐標為,離心率為18. 幾何體的表面積為()cm2,體積為cm3. (2)又因為底面ABCD是、邊長為的菱形,且M為AD中點,所以.又所以.20. 解:設P(x1,y1),Q(x2,y2),F(xiàn)為拋物線焦點,由得y2+4y-4=0,∴y1-y2===4.∴S△POQ=OFy1-y2=2.的方向為x,y,z軸的正方向建立空間直角坐標系,則B(1,0,0),D(-1,1,0),A1(0,2,),A(0,0,),B1(1,2,0),∴.∴∴,∴AB1平面A1BD為平面A1BD的法向量.取平面B1BDD的一個法向量為.∴二面角A-A1D-B的大小的余弦值為.(3)C1點到A1BD的距離為.22. 解:(I)所求曲線的方程為 (2)假若存在這樣的k值,由得. ∴。 、佟≡O,、,,則 ② 而. 要使以CD為直徑的圓過點E(-1,0),當且僅當CE⊥DE時,則,即. ∴. 、邸 ⅱ谑酱擘壅斫獾茫(jīng)驗證,,使①成立. 綜上可知,存在,使得以CD為直徑的圓過點E.云南省昆明滇池中學2013-2014學年高二上學期期末考試 理科數(shù)學 Word版含答案
本文來自:逍遙右腦記憶 http://m.yy-art.cn/gaoer/231914.html
相關閱讀: