福建師大附中2012-2013學(xué)年高二(上)期末數(shù)學(xué)試卷(理科)一、選擇題:本大題有12小題,每小題5分,共60分,在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)符合題目要求.1.(5分)命題:“?x∈R,x2?x+2≥0”的否定是( 。.?x∈R,x2?x+2≥0B.?x∈R,x2?x+2≥0C.?x∈R,x2?x+2<0D.?x∈R,x2?x+2<0考點(diǎn):命題的否定..分析:利用含量詞的命題的否定形式是:將“?“改為“?”結(jié)論否定,寫(xiě)出命題的否定.解答:解:利用含量詞的命題的否定形式得到:命題:“?x∈R,x2?x+2≥0”的否定是“?x∈R,x2?x+2<0”故選C點(diǎn)評(píng):考查含有全稱(chēng)量詞的命題的否定.注意與否命題的區(qū)別. 2.(5分)下列有關(guān)命題的說(shuō)法正確的是( 。.命題“若x2=1,則x=1”的否命題為“若x2=1,則x≠1” B.命題“若x=y,則x2=y2”的逆否命題是假命題 C.命題“若a2+b2≠0,則a,b全不為0”為真命題 D.命題“若α≠β”,則cosα≠cosβ”的逆命題為真命題考點(diǎn):命題的真假判斷與應(yīng)用;四種命題..專(zhuān)題:閱讀型.分析:根據(jù)否命題的定義,寫(xiě)出否命題判斷A是否正確;根據(jù)命題與其逆否命題同真、同假,通過(guò)判定命題的真假來(lái)判斷B是否正確;根據(jù)命題的條件與結(jié)論,判斷C是否正確;寫(xiě)出否命題,根據(jù)否命題與逆命題是互為逆否命題,來(lái)判斷D的真確性.解答:解:對(duì)A,否命題應(yīng)是:若x2≠1,則x≠1,∴A錯(cuò)誤;∵命題是真命題,∴其逆否命題也是真命題,故B錯(cuò)誤;∵若a2+b2≠0,a、b可有一個(gè)為零,∴C錯(cuò)誤;對(duì)D,否命題是:若α=β,則cosα=cosβ.是真命題,∴D正確.點(diǎn)評(píng):本題考查命題的真假判斷及四種命題關(guān)系. 3.(5分)拋物線(xiàn)y=ax2的焦點(diǎn)坐標(biāo)為( 。.B.C.D.考點(diǎn):拋物線(xiàn)的簡(jiǎn)單性質(zhì)..專(zhuān)題:計(jì)算題;圓錐曲線(xiàn)的定義、性質(zhì)與方程.分析:將拋物線(xiàn)方程化成標(biāo)準(zhǔn)形式,得到其焦點(diǎn)在y軸上.再分a的正負(fù)進(jìn)行討論,分別對(duì)照焦點(diǎn)在y軸上拋物線(xiàn)的標(biāo)準(zhǔn)形式,即可得到該拋物線(xiàn)的焦點(diǎn)坐標(biāo).解答:解:∵拋物線(xiàn)y=ax2的標(biāo)準(zhǔn)形式是x2=y∴y=ax2表示焦點(diǎn)在y軸上的拋物線(xiàn),而焦點(diǎn)在y軸的拋物線(xiàn)的標(biāo)準(zhǔn)方程為x2=2py或x2=?2py,(p>0)①當(dāng)a>0時(shí),2p=,可得=,此時(shí)焦點(diǎn)為F(0,);②當(dāng)a<0時(shí),2p=?,可得=?,∵焦點(diǎn)為F(0,?),∴該拋物線(xiàn)的焦點(diǎn)坐標(biāo)為F(0,)綜上所述,拋物線(xiàn)的焦點(diǎn)為F(0,)故選:C點(diǎn)評(píng):本題給出拋物線(xiàn)的方程含有字母參數(shù)a,求它的焦點(diǎn)坐標(biāo),著重考查了拋物線(xiàn)的標(biāo)準(zhǔn)方程與簡(jiǎn)單幾何性質(zhì)等知識(shí),屬于基礎(chǔ)題. 4.(5分)已知正方體ABCD?A1B1C1D1中,點(diǎn)E為上底面A1C1的中心,若+,則x、y的值分別為( 。.x=1,y=1B.x=1,y=C.x=,y=D.x=,y=1考點(diǎn):棱柱的結(jié)構(gòu)特征;空間向量的加減法..專(zhuān)題:計(jì)算題;作圖題.分析:畫(huà)出正方體,表示出向量,為+的形式,可得x、y的值.解答:解:如圖,++().故選C.點(diǎn)評(píng):本題考查棱柱的結(jié)構(gòu)特征,向量加減運(yùn)算,是基礎(chǔ)題. 5.(5分)在如圖所示的正方體A1B1C1D1ABCD中,E是C1D1的中點(diǎn),則異面直線(xiàn)DE與AC夾角的余弦值為( 。.?B.?C.D.考點(diǎn):異面直線(xiàn)及其所成的角..專(zhuān)題:計(jì)算題;空間角.分析:取A1D1中點(diǎn),連接EF、DF、A1C1,用三角形的中位線(xiàn)和平行線(xiàn)的傳遞性,證出EF∥AC,得∠DEF(或其補(bǔ)角)就是異面直線(xiàn)DE與AC所成的角.然后在△DEF中求出各邊的長(zhǎng),再利用余弦定理即可算出異面直線(xiàn)DE與AC夾角的余弦值.解答:解:取A1D1中點(diǎn),連接EF、DF、A1C1,∵正方形ABCD?A1B1C1D1中,A1A∥C1C且A1A=C1C∴四邊形AA1C1C是平行四邊形,可得A1C1∥AC又∵△A1C1D1中,EF是中位線(xiàn)∴EF∥A1C1,且EF=A1C1.由此可得EF∥AC,得∠DEF(或其補(bǔ)角)就是異面直線(xiàn)DE與AC所成的角設(shè)正方體的棱長(zhǎng)為a,則△DEF中DF=DE==a,EF=A1C1=a由余弦定理,得cos∠DEF==>0可得∠DEF是銳角,因此∠DEF是異面直線(xiàn)DE與AC所成的角,余弦值為故選:D點(diǎn)評(píng):本題在正方體中求異面直線(xiàn)所成角的余弦值,著重考查了正方體的性質(zhì)和異面直線(xiàn)所成角的定義及求法等知識(shí),屬于基礎(chǔ)題. 6.(5分)過(guò)點(diǎn)P(2,?2),且與有相同漸近線(xiàn)的雙曲線(xiàn)方程是( ) A.B.C.D.考點(diǎn):雙曲線(xiàn)的簡(jiǎn)單性質(zhì)..專(zhuān)題:計(jì)算題;圓錐曲線(xiàn)的定義、性質(zhì)與方程.分析:設(shè)所求的雙曲線(xiàn)方程是 =k,由點(diǎn)P(2,?2)在雙曲線(xiàn)方程上,求出k值,即得所求的雙曲線(xiàn)方程.解答:解:由題意知,可設(shè)所求的雙曲線(xiàn)方程是=k,∵點(diǎn)P(2,?2)在雙曲線(xiàn)方程上,所以,∴k=?2,故所求的雙曲線(xiàn)方程是,故選B.點(diǎn)評(píng):本題考查雙曲線(xiàn)的標(biāo)準(zhǔn)方程,以及雙曲線(xiàn)的簡(jiǎn)單性質(zhì)的應(yīng)用,解題的關(guān)鍵是根據(jù)漸近線(xiàn)方程相同設(shè)所求的雙曲線(xiàn)方程是 =k,屬于基礎(chǔ)題. 7.(5分)“方程+=1表示焦點(diǎn)在y軸上的橢圓”的充分不必要條件是( 。.B.1<m<2C.2<m<3D.1<m<3考點(diǎn):必要條件、充分條件與充要條件的判斷..專(zhuān)題:計(jì)算題;圓錐曲線(xiàn)的定義、性質(zhì)與方程.分析:根據(jù)題意,先求出“方程+=1表示焦點(diǎn)在y軸上的橢圓”的充要條件對(duì)應(yīng)的取值集合A,再將集合A的不等式范圍與各個(gè)選項(xiàng)加以對(duì)照,即可得到所求充分不必要條件.解答:解:設(shè)條件P:“方程+=1表示焦點(diǎn)在y軸上的橢圓”,P的充要條件對(duì)應(yīng)m的取值集合為A則A的不等式為:3?m>m?1>0,解之得1<m<2∴A={m1<m<2}∵條件P的充分不必要條件對(duì)應(yīng)的取值集合必定是集合A的真子集,∴對(duì)照各個(gè)選項(xiàng),可得A項(xiàng)是符合題意的選項(xiàng)故選:A點(diǎn)評(píng):本題給出含有字母參數(shù)的橢圓,求它表示焦點(diǎn)在y軸上橢圓的充分不必要條件,著重考查了橢圓的標(biāo)準(zhǔn)方程和充分必要條件的判斷等知識(shí),屬于基礎(chǔ)題. 8.(5分)已知△ABP的頂點(diǎn)A、B分別為雙曲線(xiàn)的左、右焦點(diǎn),頂點(diǎn)P在雙曲線(xiàn)C上,則的值等于( 。.B.C.D.考點(diǎn):雙曲線(xiàn)的簡(jiǎn)單性質(zhì);三角形中的幾何計(jì)算..專(zhuān)題:計(jì)算題.分析:由題意得PB?PA=8,AB=2,再利用正弦定理進(jìn)行求解.解答:解:由題意得:PB?PA=8,AB=2,從而由正弦定理,得.故選C.點(diǎn)評(píng):本題考查雙曲線(xiàn)的性質(zhì)和應(yīng)用,解題時(shí)要熟練掌握雙曲線(xiàn)的性質(zhì),注意正弦定理的合理運(yùn)用. 9.(5分)已知拋物線(xiàn)y2=?4x上的焦點(diǎn)F,點(diǎn)P在拋物線(xiàn)上,點(diǎn)A(?2,1),則要使PF+PA的值最小的點(diǎn)P的坐標(biāo)為( ) A.B.C.D.考點(diǎn):拋物線(xiàn)的簡(jiǎn)單性質(zhì);兩點(diǎn)間的距離公式..專(zhuān)題:計(jì)算題;圓錐曲線(xiàn)的定義、性質(zhì)與方程.分析:利用拋物線(xiàn)的定義,將點(diǎn)P(m,n)到焦點(diǎn)F的距離PF轉(zhuǎn)化為它到準(zhǔn)線(xiàn)l:x=1的距離,利用不等式即可求得答案.解答:解:∵拋物線(xiàn)y2=?4x的焦點(diǎn)F,∴F(?1,0),其準(zhǔn)線(xiàn)方程為l:x=1;∵點(diǎn)P在拋物線(xiàn)上,點(diǎn)A(?2,1),設(shè)點(diǎn)P在準(zhǔn)線(xiàn)l:x=1上的射影為P′,則PF=PP′,∴PF+PA=PA+PP′≥AP′=3(當(dāng)A,P,P′三點(diǎn)共線(xiàn)時(shí)取“=”).此時(shí)P點(diǎn)的縱坐標(biāo)為n=1,由12=?4m得:m=?.∴點(diǎn)P的坐標(biāo)為(?,1).故選A.點(diǎn)評(píng):本題考查拋物線(xiàn)的簡(jiǎn)單性質(zhì),考查轉(zhuǎn)化思想與不等式思想,屬于中檔題. 10.(5分)已知正方形ABCD的邊長(zhǎng)為4,E、F分別是AB、AD的中點(diǎn),GC⊥平面ABCD,且GC=2,則點(diǎn)B到平面EFG的距離為( 。.B.C.D.1考點(diǎn):點(diǎn)、線(xiàn)、面間的距離計(jì)算..專(zhuān)題:綜合題;空間位置關(guān)系與距離.分析:利用題設(shè)條件推導(dǎo)出BD∥平面EFG,從而得到BD和平面EFG的距離就是點(diǎn)B到平面EFG的距離,作OK⊥HG交HG于點(diǎn)K,由兩平面垂直的性質(zhì)定理知OK⊥平面EFG,所以線(xiàn)段OK的長(zhǎng)就是點(diǎn)B到平面EFG的距離.解答:解:如圖,連接EG、FG、EF、BD、AC、EF、BD分別交AC于H、O.因?yàn)锳BCD是正方形,E、F分別為AB和AD的中點(diǎn),故EF∥BD,H為AO的中點(diǎn).由直線(xiàn)和平面平行的判定定理知BD∥平面EFG,所以BD和平面EFG的距離就是點(diǎn)B到平面EFG的距離.∵BD⊥AC,∴EF⊥HC.∵GC⊥平面ABCD,∴EF⊥GC,∵HC∩GC=C,∴EF⊥平面HCG.∵EF?平面EFG,∴平面EFG⊥平面HCG,HG是這兩個(gè)垂直平面的交線(xiàn).作OK⊥HG交HG于點(diǎn)K,由兩平面垂直的性質(zhì)定理知OK⊥平面EFG,所以線(xiàn)段OK的長(zhǎng)就是點(diǎn)B到平面EFG的距離.∵正方形ABCD的邊長(zhǎng)為4,GC=2,∴AC=4,HO=,HC=3.∴在Rt△HCG中,HG==.由于Rt△HKO和Rt△HCG有一個(gè)銳角是公共的,故Rt△HKO∽△HCG.∴OK===.即點(diǎn)B到平面EFG的距離為.故選B.點(diǎn)評(píng):本小題主要考查直線(xiàn)與平面的位置關(guān)系、平面與平面的位置關(guān)系、點(diǎn)到平面的距離等有關(guān)知識(shí),考查學(xué)生的空間想象能力和思維能力,屬于中檔題.解決此類(lèi)問(wèn)題應(yīng)該注意從三維空間向二維平面的轉(zhuǎn)化,從而找到解題的捷徑. 11.(5分)橢圓的四個(gè)頂點(diǎn)A,B,C,D構(gòu)成的四邊形為菱形,若菱形ABCD的內(nèi)切圓恰好過(guò)焦點(diǎn),則橢圓的離心率是( 。.B.C.D.考點(diǎn):圓與圓錐曲線(xiàn)的綜合;橢圓的簡(jiǎn)單性質(zhì)..專(zhuān)題:計(jì)算題.分析:根據(jù)題意,設(shè)出直線(xiàn)AB的方程,利用菱形ABCD的內(nèi)切圓恰好過(guò)焦點(diǎn),可得原點(diǎn)到直線(xiàn)AB的距離等于半焦距,從而可求橢圓的離心率.解答:解:由題意,不妨設(shè)點(diǎn)A(a,0),B(0,b),則直線(xiàn)AB的方程為:即bx+ay?ab=0∵菱形ABCD的內(nèi)切圓恰好過(guò)焦點(diǎn)∴原點(diǎn)到直線(xiàn)AB的距離為∴a2b2=c2(a2+b2)∴a2(a2?c2)=c2(2a2?c2)∴a4?3a2c2+c4=0∴e4?3e2+1=0∴∵0<e<1∴故選C.點(diǎn)評(píng):本題重點(diǎn)考查橢圓的幾何性質(zhì),解題的關(guān)鍵是利用菱形ABCD的內(nèi)切圓恰好過(guò)焦點(diǎn),得到原點(diǎn)到直線(xiàn)AB的距離等于半焦距. 12.(5分)雙曲線(xiàn)的實(shí)軸長(zhǎng)和焦距分別為( 。.B.C.D.考點(diǎn):雙曲線(xiàn)的簡(jiǎn)單性質(zhì)..專(zhuān)題:計(jì)算題;圓錐曲線(xiàn)的定義、性質(zhì)與方程.分析:求出雙曲線(xiàn)的實(shí)軸與雙曲線(xiàn)的交點(diǎn),求出a,利用雙曲線(xiàn)的漸近線(xiàn)方程求出焦距即可.【解析版】福建師大附中2012-2013學(xué)年高二上學(xué)期期末考試數(shù)學(xué)理試題
本文來(lái)自:逍遙右腦記憶 http://m.yy-art.cn/gaoer/216039.html
相關(guān)閱讀: