新人教A版選修2-31.3二項式定理同步練習題(帶答案)

編輯: 逍遙路 關鍵詞: 高二 來源: 高中學習網



1.3二項式定理

一、:本大題共 12個小題,每小題5分,共60分.在每小題給出的四個選項中,只有一項是符合題目要求的.
1.在 的展開式中, 的系數(shù)為( )
A. B. C. D.
2. 已知 , 的展開式按a的降冪排列,其中第n 項與第n+1項相等,那么正整數(shù)n等于( )
A.4 B.9 C.10 D.11
3.已知( 的展開式的第三項與第二項的系數(shù)的比為11∶2,則n是( )
A.10 B.11 C.12 D.13
4.5310被8除的余數(shù)是( )
A.1B.2C.3D.7
5. (1.05)6的計算結果精確到0.01的近似值是( )
A.1.23 B.1.24 C.1.33 D.1.34
6.二項式 (n N)的展開式中,前三項的系數(shù)依次成等差數(shù)列,則此展開式有理項的項數(shù)是  。 )
A.1 B.2 C.3 D .4
7.設(3x +x ) 展開式的各項系數(shù)之和為t,其二項式系數(shù)之和為h,若t+h=2 72,則展開式的x 項的系數(shù)是( )
A. B.1 C.2 D.3
8.在 的展開式中 的系數(shù)為( )
A.4 B.5 C.6 D.7
9. 展開式中所有奇數(shù)項系數(shù)之和等于1024,則所有項的系數(shù)中最大的值是
( )
A.330 B.462 C.680 D.790
10. 的展開式中, 的系數(shù)為( )
A.-40 B.10 C.40 D.45
11.二項式(1+sinx)n的展開式中,末尾兩項的系數(shù)之和為7,且系數(shù)最大的一項的值為 ,則x在[0,2π]內的值為( )
A. 或 B. 或 C. 或 D. 或
12.在(1+x)5+(1+x)6+(1+x)7的展開式中,含x4項的系數(shù)是等差數(shù)列 an=3n-5的( )
A.第2項 B.第11項 C.第20項 D.第24項
二、題:本大題滿分16分,每小題4分,各題只要求直接寫出結果.
13. 展開式中 的系數(shù)是 .
14.若 ,則 的值為__________.
15.若 的展開式中只有第6項的系數(shù)最大,則展開式中的常數(shù)項是 .
16.對于二項式(1-x) ,有下列四個命題:
①展開式中T = -C x ;
②展開式中非常數(shù)項的系數(shù)和是1;
③展開式中系數(shù)最大的項是第1000項和第1001項;
④當x=2000時,(1-x) 除以2000的余數(shù)是1.
其中正確命題的序號是__________.(把你認為正確的命題序號都填上)


三、解答題:本大題滿分74分.
17.(12分)若 展開式中第二、三、四項的二項式系數(shù)成等差數(shù)列.
(1)求n的值;
(2)此展開式中是否有常數(shù)項,為什么?

18. (12分)已知( )n的展開式中前三項的二項式系數(shù)的和等于37,求展式中二項式系數(shù)最大的項的系 數(shù).

19.(12分)是否存在等差數(shù)列 ,使 對任意 都成立?若存在,求出數(shù)列 的通項公式;若不存在,請說明理由.


20.(12分)某地現(xiàn)有耕地100000畝,規(guī)劃10年后糧食單產比現(xiàn)在增加22%,人均糧食占有量比現(xiàn)在提高10%。如果人口年增加率為1%,那么耕地平均每年至多只能減少多少畝(精確到1畝)?

21. (12分)設f(x)=(1+x)+(1+x)n(、n ),若其展開式中,關于x的一次項系數(shù)為11,試問:、n取何值時,f(x)的展開式中含x2項的系數(shù)取最小值,并求出這個最小值.

22.(14分)規(guī)定 ,其中x∈R,是正整數(shù),且 ,這是組合數(shù) (n、是正整數(shù),且≤n)的一種推廣.
(1) 求 的值;
(2) 設x>0,當x為何值時, 取得最小值?
(3) 組合數(shù)的兩個性質;
① .  ② .
是否都能推廣到 (x∈R,是正整數(shù))的情形?若能推廣,則寫出推廣的形式并給出證明;若不能,則說明理由.


參考答案
一、
1.D 2.A 3.C 4.A 5.D 6.C 7.B 8.C 9.B 10.D 11.B 12.C
3.解: , .
5 .解:(1.05)6 =
=1+0.3+0.0375+0.0025+… 1.34.
6.解: ,r=0,1,…,8. 設 ,得滿足條件的整數(shù)對(r,k) 只有(0,4),(4,1),(8,-2).
7.解:由 得 ,n=4, , 取r=4.
8.解:設 = 的展開式的通項為 則 (r=0,1,2,…,6). 二項式 展開式的通項為
(n=0,1,2,…,r)
的展開式的通項公式為
令r+n=5,則n=5-r r=3,4,5,n=2,1,0.
展開式中含 項的系數(shù)為:
9.解:顯然奇數(shù)項之和是所有項系數(shù)之 和的一半,令x =1 即得所有項系數(shù)之和, 各項的系數(shù)為二項式系數(shù),故系統(tǒng)最大值為 或 ,為462.
10.解: =
= =
的系數(shù)為
二、題
13. ; 14.1; 15. =210; 1 6.①④.
三、解答題
17.解:(1)n = 7 (6分)(2)無常數(shù)項(6分)
18.解:由 (3 分)得 (5分),得 .(8分) ,該項的系數(shù)最大,為 .(12分)
19.解:假設存在等差數(shù)列 滿足要求(2分) (4分)= (8分)
依題意 , 對 恒成立,(10分) , 所求的等差數(shù)列存在,其通項公式為 .(12分)
20.解:設耕地平均每年減少x畝,現(xiàn)有人口為p人,糧食單產為噸/畝,(2分)依題意
(6分)
化簡: (8分)
(10分)

(畝)
答:耕地平均每年至多只能減少4畝.(12分)
21.解:展開式中,關于x的一次項系數(shù)為 (3分)關于x的二次項系數(shù)為 ,(8分)當n=5或6時,含x2項的系數(shù)取最小值25,此時=6,n=5或 =5,n=6. (12分)
22.解:(1) . (4分)
(2) . (6分) ∵ x > 0 , .
當且僅當 時,等號成立. ∴ 當 時, 取得最小值. (8分)
(3)性質①不能推廣,例如當 時, 有定義,但 無意義; (10分)
性質②能推廣,它的推廣形 式是 ,xR , 是正整數(shù). (12分)
事實上,當=1時,有 .
 當≥2時.
  .(14分)





本文來自:逍遙右腦記憶 http://m.yy-art.cn/gaoer/42391.html

相關閱讀:人教版高二數(shù)學期中考試試卷