0,b B.a(chǎn)>0,b>0 C.a(chǎn) D.a(chǎn) 0 [答案] D [解析] 復(fù)數(shù)z=a+bi在復(fù)平面內(nèi)的對(duì)應(yīng)點(diǎn)坐標(biāo)" />

復(fù)數(shù)的幾何意義綜合測(cè)試題(帶答案)

編輯: 逍遙路 關(guān)鍵詞: 高二 來(lái)源: 高中學(xué)習(xí)網(wǎng)
選修2-2 3.1.2 復(fù)數(shù)的幾何意義
一、
1.如果復(fù)數(shù)a+bi(a,b∈R)在復(fù)平面內(nèi)的對(duì)應(yīng)點(diǎn)在第二象限,則(  )
A.a(chǎn)>0,b<0      
B.a(chǎn)>0,b>0
C.a(chǎn)<0,b<0
D.a(chǎn)<0,b>0
[答案] D
[解析] 復(fù)數(shù)z=a+bi在復(fù)平面內(nèi)的對(duì)應(yīng)點(diǎn)坐標(biāo)為(a,b),該點(diǎn)在第二象限,需a<0且b>0,故應(yīng)選D.
2.(2010?北京文,2)在復(fù)平面內(nèi),復(fù)數(shù)6+5i,-2+3i對(duì)應(yīng)的點(diǎn)分別為A,B.若C為線(xiàn)段AB的中點(diǎn),則點(diǎn)C對(duì)應(yīng)的復(fù)數(shù)是(  )
A.4+8i
B.8+2i
C.2+4i
D.4+i
[答案] C
[解析] 由題意知A(6,5),B(-2,3),AB中點(diǎn)C(x,y),則x=6-22=2,y=5+32=4,
∴點(diǎn)C對(duì)應(yīng)的復(fù)數(shù)為2+4i,故選C.
3.當(dāng)23A.第一象限
B.第二象限
C.第三象限
D.第四象限
[答案] D
[解析] ∵23<m<1,∴3m-2>0,m-1<0,
∴點(diǎn)(3m-2,m-1)在第四象限.
4.復(fù)數(shù)z=-2(sin100°-icos100°)在復(fù)平面內(nèi)所對(duì)應(yīng)的點(diǎn)Z位于(  )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
[答案] C
[解析] z=-2sin100°+2icos100°.
∵-2sin100°<0,2cos100°<0,
∴Z點(diǎn)在第三象限.故應(yīng)選C.
5.若a、b∈R,則復(fù)數(shù)(a2-6a+10)+(-b2+4b-5)i對(duì)應(yīng)的點(diǎn)在(  )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
[答案] D
[解析] a2-6a+10=(a-3)2+1>0,-b2+4b-5
=-(b-2)2-1<0.所以對(duì)應(yīng)點(diǎn)在第四象限,故應(yīng)選D.
6.設(shè)z=(2t2+5t-3)+(t2+2t+2)i,t∈R,則以下結(jié)論中正確的是(  )
A.z對(duì)應(yīng)的點(diǎn)在第一象限
B.z一定不是純虛數(shù)
C.z對(duì)應(yīng)的點(diǎn)在實(shí)軸上方
D.z一定是實(shí)數(shù)
[答案] C
[解析] ∵2t2+5t-3=(t+3)(2t-1)的值可正、可負(fù)、可為0,t2+2t+2=(t+1)2+1≥1,∴排除A、B、D,選C.
7.下列命題中假命題是(  )
A.復(fù)數(shù)的模是非負(fù)實(shí)數(shù)
B.復(fù)數(shù)等于零的充要條件是它的模等于零
C.兩個(gè)復(fù)數(shù)模相等是這兩個(gè)復(fù)數(shù)相等的必要條件
D.復(fù)數(shù)z1>z2的充要條件是z1>z2
[答案] D
[解析]、偃我鈴(fù)數(shù)z=a+bi(a、b∈R)的模z=a2+b2≥0總成立.∴A正確;
②由復(fù)數(shù)相等的條件z=0?a=0b=0.?z=0,故B正確;
③若z1=a1+b1i,z2=a2+b2i(a1、b1、a2、b2∈R)
若z1=z2,則有a1=a2,b1=b2,∴z1=z2
反之由z1=z2,推不出z1=z2,
如z1=1+3i,z2=1-3i時(shí)z1=z2,故C正確;
④不全為零的兩個(gè)復(fù)數(shù)不能比較大小,但任意兩個(gè)復(fù)數(shù)的?偰鼙容^大小,∴D錯(cuò).
8.已知復(fù)數(shù)z=(x-1)+(2x-1)i的模小于10,則實(shí)數(shù)x的取值范圍是(  )
A.-45B.x<2
C.x>-45
D.x=-45或x=2
[答案] A
[解析] 由題意知(x-1)2+(2x-1)2<10,
解之得-459.已知復(fù)數(shù)z1=a+bi(a,b∈R),z2=-1+ai,若z1A.b<-1或b>1
B.-1C.b>1
D.b>0
[答案] B
[解析] 由z1∴b2<1,則-110.復(fù)平面內(nèi)向量OA→表示的復(fù)數(shù)為1+i,將OA→向右平移一個(gè)單位后得到向量O′A′→,則向量O′A′→與點(diǎn)A′對(duì)應(yīng)的復(fù)數(shù)分別為(  )
A.1+i,1+i
B.2+i,2+i
C.1+i,2+i
D.2+i,1+i
[答案] C
[解析] 由題意O′A′→=OA→,對(duì)應(yīng)復(fù)數(shù)為1+i,點(diǎn)A′對(duì)應(yīng)復(fù)數(shù)為1+(1+i)=2+i.
二、題
11.如果復(fù)數(shù)z=(m2+m-1)+(4m2-8m+3)i(m∈R)對(duì)應(yīng)的點(diǎn)在第一象限,則實(shí)數(shù)m的取值范圍為_(kāi)_______________.
[答案] -∞,-1-52∪32,+∞
[解析] 復(fù)數(shù)z對(duì)應(yīng)的點(diǎn)在第一象限
需m2+m-1>04m2-8m+3>0解得:m<-1-52或m>32.
12.設(shè)復(fù)數(shù)z的模為17,虛部為-8,則復(fù)數(shù)z=________.
[答案] ±15-8i
[解析] 設(shè)復(fù)數(shù)z=a-8i,由a2+82=17,
∴a2=225,a=±15,z=±15-8i.
13.已知z=(1+i)m2-(8+i)m+15-6i(m∈R),若復(fù)數(shù)z對(duì)應(yīng)點(diǎn)位于復(fù)平面上的第二象限,則m的取值范圍是________.
[答案] 3[解析] 將復(fù)數(shù)z變形為z=(m2-8m+15)+(m2-m-6)i
∵復(fù)數(shù)z對(duì)應(yīng)點(diǎn)位于復(fù)平面上的第二象限
∴m2-8m+15<0m2-m-6>0解得314.若t∈R,t≠-1,t≠0,復(fù)數(shù)z=t1+t+1+tti的模的取值范圍是________.
[答案] [2,+∞)
[解析] z2=t1+t2+1+tt2≥2t1+t?1+tt=2.
∴z≥2.
三、解答題
15.實(shí)數(shù)m取什么值時(shí),復(fù)平面內(nèi)表示復(fù)數(shù)z=2m+(4-m2)i的點(diǎn)
(1)位于虛軸上;
(2)位于一、三象限;
(3)位于以原點(diǎn)為圓心,以4為半徑的圓上.
[解析] (1)若復(fù)平面內(nèi)對(duì)應(yīng)點(diǎn)位于虛軸上,則2m=0,即m=0.
(2)若復(fù)平面內(nèi)對(duì)應(yīng)點(diǎn)位于一、三象限,則2m(4-m2)>0,解得m<-2或0(3)若對(duì)應(yīng)點(diǎn)位于以原點(diǎn)為圓心,4為半徑的圓上,
則4m2+(4-m2)2=4
即m4-4m2=0,解得m=0或m=±2.
16.已知z1=x2+x2+1i,z2=(x2+a)i,對(duì)于任意的x∈R,均有z1>z2成立,試求實(shí)數(shù)a的取值范圍.
[解析] z1=x4+x2+1,z2=x2+a
因?yàn)閦1>z2,所以x4+x2+1>x2+a
?x4+x2+1>(x2+a)2?(1-2a)x2+(1-a2)>0恒成立.
不等式等價(jià)于1-2a=0或1-2a>0Δ=-4(1-2a)(1-a2)<0
解得-1所以a的取值范圍為-1,12.
17.已知z1=cosθ+isin2θ,z2=3sinθ+icosθ,當(dāng)θ為何值時(shí)
(1)z1=z2;
(2)z1,z2對(duì)應(yīng)點(diǎn)關(guān)于x軸對(duì)稱(chēng);
(3)z2<2.
[解析] (1)z1=z2?cosθ=3sinθsin2θ=cosθ
?tanθ=332sinθcosθ=cosθ?θ=2kπ+π6(k∈Z).
(2)z1與z2對(duì)應(yīng)點(diǎn)關(guān)于x軸對(duì)稱(chēng)
?cosθ=3sinθsin2θ=-cosθ?θ=kπ+π6(k∈Z)2sinθcosθ=-cosθ
?θ=2kπ+76π(k∈Z).
(3)z2<2?(3sinθ)2+cos2θ<2
?3sin2θ+cos2θ<2?sin2θ<12
?kπ-π4<θ18.已知復(fù)數(shù)z1=3-i及z2=-12+32i.
(1)求z1及z2的值并比較大;
(2)設(shè)z∈C,滿(mǎn)足條件z2≤z≤z1的點(diǎn)Z的軌跡是什么圖形?
[解析] (1)z1=3+i=(3)2+12=2
z2=-12-32i=1.∴z1>z2.
(2)由z2≤z≤z1,得1≤z≤2.
因?yàn)閦≥1表示圓z=1外部所有點(diǎn)組成的集合.
z≤2表示圓z=2內(nèi)部所有點(diǎn)組成的集合,


本文來(lái)自:逍遙右腦記憶 http://m.yy-art.cn/gaoer/68497.html

相關(guān)閱讀:高二數(shù)學(xué)三角形中的幾何計(jì)算綜合測(cè)試題(含答案)