山東省濟(jì)寧市規(guī)范化學(xué)校高二上學(xué)期期末模擬 數(shù)學(xué)理

編輯: 逍遙路 關(guān)鍵詞: 高二 來(lái)源: 高中學(xué)習(xí)網(wǎng)
試卷說(shuō)明:

—學(xué)年高二上學(xué)期期末模擬考試數(shù)學(xué)(理)一.1.若集合M={-11},P={yy=x2,x(M},則集合M與P的關(guān)系是 ) A.PMB.MP C.M=P D.M∈P2.直線(為實(shí)常數(shù))的傾斜角的大小是( )A. B. C. D.3. 已知條件p:,條件q:,則“非p”是“非q”的( ) A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件 4.拋物線的準(zhǔn)線方程是( ) A. B. C. D. 5.命題“對(duì)任意的”的否定是( ) A.不存在B.存在 C.存在 D.對(duì)任意的6. 已知一個(gè)三棱錐的三視圖如圖所示,其中俯視圖是等腰三角形,則該三棱錐的體積為A.B.C.D.與橢圓的離心率互為倒數(shù),則( 。〢.B.C.D.:相內(nèi)切,且與定直線:相切,則此動(dòng)圓的圓心的軌跡方程是( )A.B.C.D.與曲線的交點(diǎn)個(gè)數(shù)為( )A.B.C.D..三棱錐中,兩兩垂直且相等,點(diǎn)分別是和上,且滿足,,則和所成角余弦值的取值范圍是 A.B.C.D.. 若,則的最小值是 )A.1B. 2 C. 3 D. 412.關(guān)于函數(shù)的四個(gè)結(jié)論:P1:最大值為P2:最小正周期為P3:單調(diào)遞增區(qū)間為ZP4:圖象的對(duì)稱中心為Z.其中正確的 )A.4 個(gè)B.個(gè)C.個(gè)D.個(gè).的傾斜角的余弦值為_(kāi)_____________________.14.上,且燈的深度等于燈口直徑,且為64 ,則光源安裝的位置到燈的頂端的距離為_(kāi)___________..中,直線與平面所成角的大小為_(kāi)___________.與圓的公共弦的長(zhǎng)為8,則___________.,b=3,求a和c.18.(本小題滿分12分)PM2.5是指大氣中直徑小于或等于2.5微米的顆粒物,也稱為可入肺顆粒物.我國(guó)PM2.5標(biāo)準(zhǔn)采用世衛(wèi)組織設(shè)定的最寬限值,PM2.5日均值在35微克/立方米及其以下空氣質(zhì)量為一級(jí),在35微克/立方米~75微克/立方米之間空氣質(zhì)量為二級(jí),在75微克/立方米及其以上空氣質(zhì)量為超標(biāo). 某試點(diǎn)城市環(huán)保局從該市市區(qū)全年每天的PM2.5監(jiān)測(cè)數(shù)據(jù)中隨機(jī)抽取6天的數(shù)據(jù)作為樣本,監(jiān)測(cè)值如莖葉圖所示(十位為莖,個(gè)位為葉),若從這6天的數(shù)據(jù)中隨機(jī)抽出2天.(1)求恰有一天空氣質(zhì)量超標(biāo)的概率;(2)求至多有一天空氣質(zhì)量超標(biāo)的概率.19. (本小題滿分12分)如圖,四棱錐的底面為一直角梯形,,底面,是的中點(diǎn).(1)求證:平面;(2)若平面,求二面角的余弦值.20. (本小題滿分12分)C:及直線L:.(1)C有公共點(diǎn)時(shí),求實(shí)數(shù)m的取值范圍;()C截得的弦最長(zhǎng)時(shí),求直線L所在的直線方程 .21.(本小題滿分12分) 已知橢圓焦點(diǎn),為上頂點(diǎn)為坐標(biāo)原點(diǎn),若△的面積為,且橢圓的離心率為.求橢圓的方程;是否存在直線交橢圓,兩點(diǎn)使點(diǎn)為的垂心?若存在,求出直線的方程若不存在,請(qǐng)說(shuō)明理由.(本小題滿分12分)設(shè)為實(shí)數(shù),且.(1)求方程的解;(2)若,滿足,求證:①;② 14. 15. 16.或 17.解:(1)由題意得 , 由正弦定理得,,,所以, 即,所以, 又,所以. (2)由得,又,所以. 由,可得,所以,即, 所以18. 解:由莖葉圖知:6天有4天空氣質(zhì)量未超標(biāo),有2天空氣質(zhì)量超標(biāo)記未超標(biāo)的4天為,,,,超標(biāo)的兩天為,.則從6天中抽取2天的所有情況為:,,,,,,,,,,,,,,,基本事件數(shù)為15(1)記6天中抽取2天,恰有1天空氣質(zhì)量超標(biāo)為事件,可能結(jié)果為:,,,,,,,,基本事件數(shù)為∴P(A)= ()記至多有一天空氣質(zhì)量超標(biāo)為事件,2天都超標(biāo)為事件,其可能結(jié)果為,故P()=,∴P()=1-P()=是的中點(diǎn)DC.又AB∥DC且AB=DC;∴FE∥AB,且FE=AB,∴四邊形ABEF為平行四邊形,∴AF∥BE ,平面平面//平面 設(shè),建立如圖的空間坐標(biāo)系,,,,.(1),,所以平面,平面(2)平面,,即,,即平面和平面中,,面的法向量為(=0,且(=0;得取y=1,得z=-1,x=2,∴又平面的法向量為;,>==(=(所以二面角的余弦值為. 消去y,整理得…2分 ∴△ (1)因?yàn)橹本和橢圓有公共點(diǎn)的充要條件是△,即,解之得 (2)設(shè)直線L和橢圓C相交于兩點(diǎn)A(x1,y1),B(x2,y2)由韋達(dá)定理得 ……8分∴弦長(zhǎng)AB= = = ,……10分∴當(dāng)m=0時(shí),AB. 21.解:(1)由題意可得,解得,,故橢圓方程為假設(shè)存在直線交橢圓于兩點(diǎn),且為的垂心,設(shè)因?yàn)椋,故?于是設(shè)直線,由得.由,得, 且,. 由題意應(yīng)有,又,故,得. 整理得解得.經(jīng)檢驗(yàn),當(dāng)時(shí),△不存在,故舍去.當(dāng)時(shí),所求直線存在,且直線的方程為. 22. 解:1所以x=10或 () , 從而-lga=lgb,從而ab=1 又, 令) 任取,上為增函數(shù). . 所以 8347931937PM2.5日均值(微克/m3)山東省濟(jì)寧市規(guī)范化學(xué)校高二上學(xué)期期末模擬 數(shù)學(xué)理
本文來(lái)自:逍遙右腦記憶 http://m.yy-art.cn/gaoer/857795.html

相關(guān)閱讀:高二數(shù)學(xué)必修五不等式測(cè)試題(含答案)[1]