有理數(shù)的混合運(yùn)算

編輯: 逍遙路 關(guān)鍵詞: 八年級 來源: 高中學(xué)習(xí)網(wǎng)
有理數(shù)的混合運(yùn)算
教學(xué)目的和要求:
1.進(jìn)一步熟練掌握有理數(shù)的混合運(yùn)算,并會用運(yùn)算律簡化運(yùn)算。
2.培養(yǎng)學(xué)生的運(yùn)算能力及綜合運(yùn)用知識解決問題的能力。
教學(xué)重點和難點:
重點:有理數(shù)的運(yùn)算順序和運(yùn)算律的運(yùn)用。
難點:準(zhǔn)確地掌握有理數(shù)的運(yùn)算順序、靈活運(yùn)用運(yùn)算律和運(yùn)算中的符號問題。
教學(xué)工具和方法:
工具:應(yīng)用投影儀,投影片。
方法:分層次教學(xué),講授、練習(xí)相結(jié)合。
教學(xué)過程:
一、復(fù)習(xí)引入:
1.?dāng)⑹鲇欣頂?shù)的運(yùn)算順序。?
2.計算:
(1) ?2.5×(?4.8)×(0.09)÷(?0.27); (2) 2 × ;
(3) (?3)×(?5)2; (4)[(?3)×(?5)]2; (5) (?3)2?(?6); (6) (?4×32)?(?4×3)2。

二、講授新課:
1.例題:
有理數(shù)的混合運(yùn)算涉及多種運(yùn)算,確定合理的運(yùn)算順序是正確解題的關(guān)鍵,能用簡便方法的就用簡便方法、能夠口算的就口算,下面再看幾個例子。
例1:計算:3+50÷22×( )-1
解:原式=3+50÷4×( )-1????????????(先算乘方)
= ???????????????(化除為乘)
= ???(先定符號,再算絕對值)
例2:計算:
解原式= =
也可這樣來算:解原式= = = 。
例3:計算:
解原式= = = 。
或者用分配律計算。

2.課堂練習(xí): 課本:P70:1,2。

三、課堂小結(jié):
在有理數(shù)混合運(yùn)算中,先算乘方,再算乘除,乘除運(yùn)算在一起時,統(tǒng)一化成乘法往往可以約分而使運(yùn)算簡化;遇到帶分?jǐn)?shù)通分時,可以寫成整數(shù)與真分?jǐn)?shù)和的形式,如? 。
四、課堂作業(yè):
課本:P70: 2,3。

板書設(shè)計:

教學(xué)后記:
有理數(shù)的混合運(yùn)算的關(guān)鍵是運(yùn)算的順序,運(yùn)算法則和性質(zhì),為此,必須進(jìn)一步對加,減,乘,除,乘方運(yùn)算法則和性質(zhì)的理解與強(qiáng)化,熟練掌握,在此基礎(chǔ)上對其運(yùn)算順序也應(yīng)熟知,只要這兩個方面學(xué)的好,掌握牢在運(yùn)算過程中,始終遵循四個方面:一是運(yùn)算法則,二是運(yùn)算律,三是運(yùn)算順序,四是近似計算,為了提高運(yùn)算適度,要靈活運(yùn)用運(yùn)算律,還要能創(chuàng)造條件利用運(yùn)算律,如拆數(shù),移動小數(shù)點等,對于復(fù)雜的有理數(shù)運(yùn)算,要善于觀察,分析,類比與聯(lián)想,從中找出規(guī)律,再運(yùn)用運(yùn)算律進(jìn)行計算,至此,便可在有理數(shù)的混合運(yùn)算中穩(wěn)操勝卷。

本文來自:逍遙右腦記憶 http://m.yy-art.cn/chuer/62856.html

相關(guān)閱讀:二次根式的運(yùn)算