圓的標(biāo)準(zhǔn)方程

編輯: 逍遙路 關(guān)鍵詞: 高一 來源: 高中學(xué)習(xí)網(wǎng)
M
總 課 題圓與方程總課時第33課時
分 課 題圓的標(biāo)準(zhǔn)方程分課時第 1 課時
目標(biāo)掌握圓的標(biāo)準(zhǔn)方程,并根據(jù)圓的標(biāo)準(zhǔn)方程寫出圓心坐標(biāo)和圓的半徑.會用代定系數(shù)法求圓的基本量 、 、 .

重點難點根據(jù)圓的標(biāo)準(zhǔn)方程寫出圓心坐標(biāo)和圓的半徑.會用代定系數(shù)法求圓的基本量 、 、 .

?引入新課
問題1.在前面我們學(xué)習(xí)了直線的方程,只要給出適當(dāng)?shù)臈l件就可以寫出直線的方程.那么,一個圓能不能用方程表示出來呢?

問題2.要求一個圓的方程需要哪些條件?如何求得呢?
1.圓的標(biāo)準(zhǔn)方程的推導(dǎo)過程:

2.圓的標(biāo)準(zhǔn)方程:_________________________________________________________.
?例題剖析
例1  求圓心是 ,且經(jīng)過原點的圓的標(biāo)準(zhǔn)方程.


例2  已知隧道的截面是半徑為 的半圓,車輛只能在道路中心線一側(cè)行駛,一輛寬為 ,高為 的貨車能不能駛?cè)脒@個隧道?

思考:假設(shè)貨車的最大寬度為 那么貨車要駛?cè)朐撍淼溃薷邽槎嗌伲?br />例3 。1)已知圓的直徑的兩個端點是 , .求該圓的標(biāo)準(zhǔn)方程.
(2)已知圓的直徑的兩個端點是 , .求該圓的標(biāo)準(zhǔn)方程.

例4  求過點 , ,且圓心 在直線 上的圓的標(biāo)準(zhǔn)方程.

?鞏固練習(xí)
1.圓 : 的圓心坐標(biāo)和半徑分別為__________;__________.
2.圓心為 且與直線 相切的圓的標(biāo)準(zhǔn)方程為 .
3.以 為圓心且過點 的圓的標(biāo)準(zhǔn)方程為 .
4.若點 在圓 外,則實數(shù) 的取值范圍是 .
5.求過點 且與 軸切于原點的圓的標(biāo)準(zhǔn)方程.
?課堂小結(jié)
圓的標(biāo)準(zhǔn)方程推導(dǎo);根據(jù)圓的方程寫出圓心坐標(biāo)和半徑;用代定系數(shù)法求圓的標(biāo)準(zhǔn)方程.
?課后訓(xùn)練
一 基礎(chǔ)題
1.寫出滿足下列條件的圓的標(biāo)準(zhǔn)方程:
(1)圓心在原點,半徑為 :                 ;
(2)經(jīng)過點 ,圓心為 :                 ;
(3)經(jīng)過點 ,圓心為 :                 。
(4)與兩坐標(biāo)軸都相切,且圓心在直線 上:           。
(5)經(jīng)過點 和 ,且圓心在 軸上:              。
2.求以點 為圓心,并與 軸相切的圓的標(biāo)準(zhǔn)方程.

3.已知點 和 ,求以線段 為直徑的圓的標(biāo)準(zhǔn)方程.

4.已知半徑為 的圓過點 ,且圓心在直線 上,求圓的標(biāo)準(zhǔn)方程.

5.求過兩點 和 ,且圓心在直線 上的圓的標(biāo)準(zhǔn)方程.
二 提高題
6.已知點 在圓 的內(nèi)部,求實數(shù) 的取值范圍.

7.若圓 經(jīng)過點 且和直線 相切,并且圓心在直線 上,
求圓 的標(biāo)準(zhǔn)方程.


本文來自:逍遙右腦記憶 http://m.yy-art.cn/gaoyi/73901.html

相關(guān)閱讀:利用二分法求方程的近似解