用二分法求方程的近似解

編輯: 逍遙路 關(guān)鍵詞: 高一 來(lái)源: 高中學(xué)習(xí)網(wǎng)
學(xué)習(xí)目標(biāo)
1. 根據(jù)具體函數(shù)圖象,能夠借助計(jì)算器用二分法求相應(yīng)方程的近似解;
2. 通過(guò)用二分法求方程的近似解,使學(xué)生體會(huì)函數(shù)零點(diǎn)與方程根之間的聯(lián)系,初步形成用函數(shù)觀點(diǎn)處理問(wèn)題的意識(shí).
舊知提示 (預(yù)習(xí)教材P89~ P91,找出疑惑之處)
復(fù)習(xí)1:什么叫零點(diǎn)?零點(diǎn)的等價(jià)性?零點(diǎn)存在性定理?
對(duì)于函數(shù) ,我們把使 的實(shí)數(shù)x叫做函數(shù) 的零點(diǎn).
方程 有實(shí)數(shù)根 函數(shù) 的圖象與x軸 函數(shù) .
如果函數(shù) 在區(qū)間 上的圖象是連續(xù)不斷的一條曲線,并且有 ,那么,函數(shù) 在區(qū)間 內(nèi)有零點(diǎn).
復(fù)習(xí)2:一元二次方程求根公式? 三次方程? 四次方程?
合作探究
探究:有12個(gè)小球,質(zhì)量均勻,只有一個(gè)是比別的球重的,你用天平稱幾次可以找出這個(gè)球的,要求次數(shù)越少越好.
解法:第一次,兩端各放 個(gè)球,低的那一端一定有重球;
第二次,兩端各放 個(gè)球,低的那一端一定有重球;
第三次,兩端各放 個(gè)球,如果平衡,剩下的就是重球,否則,低的就是重球.
思考:以上的方法其實(shí)這就是一種二分法的思想,采用類似的方法,如何求 的零點(diǎn)所在區(qū)間?如何找出這個(gè)零點(diǎn)?

新知:二分法的思想及步驟
對(duì)于在區(qū)間 上連續(xù)不斷且 <0的函數(shù) ,通過(guò)不斷的把函數(shù)的零點(diǎn)所在的區(qū)間一分為二,使區(qū)間的兩個(gè)端點(diǎn)逐步逼近零點(diǎn),進(jìn)而得到零點(diǎn)近似值的方法叫二分法(bisection).
反思: 給定精度ε,用二分法求函數(shù) 的零點(diǎn)近似值的步驟如何呢?
①確定區(qū)間 ,驗(yàn)證 ,給定精度ε;
②求區(qū)間 的中點(diǎn) ;[高考資源網(wǎng)]
③計(jì)算 : 若 ,則 就是函數(shù)的零點(diǎn); 若 ,則令 (此時(shí)零點(diǎn) ); 若 ,則令 (此時(shí)零點(diǎn) );
④判斷是否達(dá)到精度ε;即若 ,則得到零點(diǎn)零點(diǎn)值a(或b);否則重復(fù)步驟②~④.
典型例題
例1 借助計(jì)算器或計(jì)算機(jī),利用二分法求方程 的近似解.
練1. 求方程 的解的個(gè)數(shù)及其大致所在區(qū)間.

練2.求函數(shù) 的一個(gè)正數(shù)零點(diǎn)(精確到 )
零點(diǎn)所在區(qū)間中點(diǎn)函數(shù)值符號(hào)區(qū)間長(zhǎng)度

練3. 用二分法求 的近似值.

課堂小結(jié)
① 二分法的概念;②二分法步驟;③二分法思想.
知識(shí)拓展
高次多項(xiàng)式方程公式解的探索史料
在十六世紀(jì),已找到了三次和四次函數(shù)的求根公式,但對(duì)于高于4次的函數(shù),類似的努力卻一直沒(méi)有成功,到了十九世紀(jì),根據(jù)阿貝爾(Abel)和伽羅瓦(Galois)的研究,人們認(rèn)識(shí)到高于4次的代數(shù)方程不存在求根公式,亦即,不存在用四則運(yùn)算及根號(hào)表示的一般的公式解.同時(shí),即使對(duì)于3次和4次的代數(shù)方程,其公式解的表示也相當(dāng)復(fù)雜,一般來(lái)講并不適宜作具體計(jì)算.因此對(duì)于高次多項(xiàng)式函數(shù)及其它的一些函數(shù),有必要尋求其零點(diǎn)近似解的方法,這是一個(gè)在計(jì)算數(shù)學(xué)中十分重要的課題.
學(xué)習(xí)評(píng)價(jià)
1. 若函數(shù) 在區(qū)間 上為減函數(shù),則 在 上( ).
A. 至少有一個(gè)零點(diǎn) B. 只有一個(gè)零點(diǎn)
C. 沒(méi)有零點(diǎn) D. 至多有一個(gè)零點(diǎn)
2. 下列函數(shù)圖象與 軸均有交點(diǎn),其中不能用二分法求函數(shù)零點(diǎn)近似值的是( 。.

3. 函數(shù) 的零點(diǎn)所在區(qū)間為( ).
A. B. C. D.
4. 用二分法求方程 在區(qū)間[2,3]內(nèi)的實(shí)根,由計(jì)算器可算得 , , ,那么下一個(gè)有根區(qū)間為 .
課后作業(yè)
1.若函數(shù)f(x)是奇函數(shù),且有三個(gè)零點(diǎn)x1、x2、x3,則x1+x2+x3的值為(  )
A.-1     B.0 C.3 D.不確定
2.已知f(x)=-x-x3,x∈[a,b],且f(a)?f(b)<0,則f(x)=0在[a,b]內(nèi)(  )
A.至少有一實(shí)數(shù)根 B.至多有一實(shí)數(shù)根
C.沒(méi)有實(shí)數(shù)根 D.有惟一實(shí)數(shù)根
3.設(shè)函數(shù)f(x)=13x-lnx(x>0)則y=f(x)(  )
A.在區(qū)間1e,1,(1,e)內(nèi)均有零點(diǎn) B.在區(qū)間1e,1, (1,e)內(nèi)均無(wú)零點(diǎn)
C.在區(qū)間1e,1內(nèi)有零點(diǎn);在區(qū)間(1,e)內(nèi)無(wú)零點(diǎn)[高考資源網(wǎng)]
D.在區(qū)間1e,1內(nèi)無(wú)零點(diǎn),在區(qū)間(1,e)內(nèi)有零點(diǎn)
4.函數(shù)f(x)=ex+x-2的零點(diǎn)所在的一個(gè)區(qū)間是(  )
A.(-2,-1) B.(-1,0) C.(0,1) D.(1,2)
5.若方程x2-3x+mx+m=0的兩根均在(0,+∞)內(nèi),則m的取值范圍是(  )
A.m≤1 B.01 D.06.函數(shù)f(x)=(x-1)ln(x-2)x-3的零點(diǎn)有(  )
A.0個(gè) B.1個(gè) C.2個(gè) D.3個(gè)
7.函數(shù)y=3x-1x2的一個(gè)零點(diǎn)是(  )
A.-1 B.1 C.(-1,0) D.(1,0)
8.函數(shù)f(x)=ax2+bx+c,若f(1)>0,f(2)<0,則f(x)在(1,2)上零點(diǎn)的個(gè)數(shù)為(  )
A.至多有一個(gè) B.有一個(gè)或兩個(gè) C.有且僅有一個(gè) D.一個(gè)也沒(méi)有
9.根據(jù)表格中的數(shù)據(jù),可以判定方程ex-x-2=0的一個(gè)根所在的區(qū)間為(  )
x-10123
ex0.3712.727.3920.09
A.(-1,0) B.(0,1) C.(1,2) D.(2,3)

本文來(lái)自:逍遙右腦記憶 http://m.yy-art.cn/gaoyi/75345.html

相關(guān)閱讀:利用二分法求方程的近似解