函數(shù)的奇偶性 教案

編輯: 逍遙路 關(guān)鍵詞: 高一 來源: 高中學(xué)習(xí)網(wǎng)
函數(shù)的奇偶性
學(xué)習(xí)目標(biāo) 1.函數(shù)奇偶性的概念
2.由函數(shù)圖象研究函數(shù)的奇偶性
3.函數(shù)奇偶性的判斷
重點:能運用函數(shù)奇偶性的定義判斷函數(shù)的奇偶性
難點:理解函數(shù)的奇偶性
知識梳理:
1.軸對稱圖形:
2中心對稱圖形:
【概念探究】
1、畫出函數(shù) ,與 的圖像;并觀察兩個函數(shù)圖像的對稱性。
2、求出 , , 時的函數(shù)值,寫出 , 。

結(jié)論: , 。
3、奇函數(shù):___________________________________________________
4、偶函數(shù):______________________________________________________
【概念深化】
(1)、強調(diào)定義中“任意”二字,奇偶性是函數(shù)在定義域上的整體性質(zhì)。
(2)、奇函數(shù)偶函數(shù)的定義域關(guān)于原點對稱。
5、奇函數(shù)與偶函數(shù)圖像的對稱性:
如果一個函數(shù)是奇函數(shù),則這個函數(shù)的圖像是以坐標(biāo)原點為對稱中心的__________。反之,如果一個函數(shù)的圖像是以坐標(biāo)原點為對稱中心的中心對稱圖形,則這個函數(shù)是___________。
如果一個函數(shù)是偶函數(shù),則這個函數(shù)的圖像是以 軸為對稱軸的__________。反之,如果一個函數(shù)的圖像是關(guān)于 軸對稱,則這個函數(shù)是___________。
6. 根據(jù)函數(shù)的奇偶性,函數(shù)可以分為____________________________________.

題型一:判定函數(shù)的奇偶性。
例1、判斷下列函數(shù)的奇偶性:
(1) (2) (3)
(4) (5)

練習(xí):教材第49頁,練習(xí)A第1題
總結(jié):根據(jù)例題,你能給出用定義判斷函數(shù)奇偶性的步驟?
題型二:利用奇偶性求函數(shù)解析式
例2:若f(x)是定義在R上的奇函數(shù),當(dāng)x<0時,f(x)=x(1-x),求當(dāng) 時f(x)的解析式。

練習(xí):若f(x)是定義在R上的奇函數(shù),當(dāng)x>0時,f(x)=xx-2,求當(dāng)x<0時f(x)的解析式。
已知定義在實數(shù)集 上的奇函數(shù) 滿足:當(dāng)x>0時, ,求 的表達式

題型三:利用奇偶性作函數(shù)圖像
例3 研究函數(shù) 的性質(zhì)并作出它的圖像

練習(xí):教材第49練習(xí)A第3,4,5題,練習(xí)B第1,2題

當(dāng)堂檢測
1 已知 是定義在R上的奇函數(shù),則( D )
A. B. C. D.
2 如果偶函數(shù) 在區(qū)間 上是減函數(shù),且最大值為7,那么 在區(qū)間 上是( B )
A. 增函數(shù)且最小值為-7 B. 增函數(shù)且最大值為7
C. 減函數(shù)且最小值為-7 D. 減函數(shù)且最大值為7
3 函數(shù) 是定義在區(qū)間 上的偶函數(shù),且 ,則下列各式一定成立的是(C )
A. B. C. D.
4 已知函數(shù) 為奇函數(shù),若 ,則 -1
5 若 是偶函數(shù),則 的單調(diào)增區(qū)間是
6 下列函數(shù)中不是偶函數(shù)的是(D )
A B C D
7 設(shè)f(x)是R上的偶函數(shù),切在 上單調(diào)遞減,則f(-2),f(- ),f(3)的大小關(guān)系是( A )
A B f(- )>f(-2)> f(3) C f(- )8 奇函數(shù) 的圖像必經(jīng)過點( C )
A (a,f(-a)) B (-a,f(a)) C (-a,-f(a)) D (a,f( ))
9 已知函數(shù) 為偶函數(shù),其圖像與x軸有四個交點,則方程f(x)=0的所有實根之和是( A )
A 0 B 1 C 2 D 4
10 設(shè)f(x)是定義在R上的奇函數(shù),且x>0時,f(x)= ,則f(-2)=_-5__
11若f(x)在 上是奇函數(shù),且f(3)_f(-1)

12.解答題
用定義判斷函數(shù) 的奇偶性。

13定義證明函數(shù)的奇偶性
已知函數(shù) 在區(qū)間D上是奇函數(shù),函數(shù) 在區(qū)間D上是偶函數(shù),求證: 是奇函數(shù)
14利用函數(shù)的奇偶性求函數(shù)的解析式:
已知分段函數(shù) 是奇函數(shù),當(dāng) 時的解析式為 ,求這個函數(shù)在區(qū)間 上的解析表達式。


本文來自:逍遙右腦記憶 http://m.yy-art.cn/gaoyi/73474.html

相關(guān)閱讀:函數(shù)概念的應(yīng)用