三角形中邊與角之間的不等關(guān)系

編輯: 逍遙路 關(guān)鍵詞: 八年級(jí) 來源: 高中學(xué)習(xí)網(wǎng)


《三角形中邊與角之間的不等關(guān)系》教學(xué)設(shè)計(jì)
教學(xué)目標(biāo):
1.通過實(shí)驗(yàn)探究發(fā)現(xiàn):在一個(gè)三角形中邊與角之間的不等關(guān)系;
2.通過實(shí)驗(yàn)探究和推理論證,發(fā)展學(xué)生的分析問題和解決問題的能力;通過探索、總結(jié)形成利用圖形的翻折等變換是解決幾何問題常見的策略;
3.提供動(dòng)手操作的機(jī)會(huì),讓學(xué)生體驗(yàn)數(shù)學(xué)活動(dòng)中充滿著探索與創(chuàng)新,激發(fā)學(xué)生學(xué)習(xí)幾何的興趣。
教學(xué)重點(diǎn):三角形中邊與角之間的不等關(guān)系及其探究過程。
教學(xué)難點(diǎn):如何從實(shí)驗(yàn)操作中得到啟示,寫成幾何證明的表達(dá)。
教具準(zhǔn)備:三角形紙片數(shù)張、剪刀、圓規(guī)、三角板等。
教學(xué)過程
一、知識(shí)回顧
1.等腰三角形具有什么性質(zhì)?
2.如何判定一個(gè)三角形是等腰三角形?
從這兩條結(jié)論看,今后要在同一個(gè)三角形中證明兩個(gè)角相等,可以先證明它們所對(duì)的邊相等;同樣要證明兩條邊相等可以先證明它們所對(duì)的角相等。
二、引入新
問題:在三角形中不相等的邊所對(duì)的角之間又有怎樣的大小關(guān)系呢?或者不相等的角所對(duì)的邊之間大小關(guān)系又怎樣?
方法回顧:在探究“等邊對(duì)等角”時(shí),我們采用將三角形對(duì)折的方式,發(fā)現(xiàn)了“在三角形中相等的邊所對(duì)的角相等”,從而利用三角形的全等證明了這些性質(zhì)。
現(xiàn)在請(qǐng)大家拿出三角形的紙片用類似的方法探究今天的問題。
三.探究新知
實(shí)驗(yàn)與探究1:在△ABC中,如果AB>AC,那么我們可以將△ABC沿∠BAC的平分線AD折疊,使點(diǎn)C落在AB邊上的點(diǎn)E處,即AE=AC,這樣得到∠AED=∠C,再利用∠AED是△BDE的外角的關(guān)系得到∠AED>∠B,從而得到∠C>∠B。
由上面的操作過程得到啟示,請(qǐng)寫出證明過程。
(提示:作∠BAC的平分線AD,在AB邊上取點(diǎn)E,使AE=AC,連結(jié)DE。)
形成結(jié)論1:在一個(gè)三角形中,如果兩條邊不等,那么它們所對(duì)的角也不等,大邊所對(duì)的角較大。
思考:是否還有不同的方法證明這個(gè)結(jié)論?

實(shí)驗(yàn)與探究2:在△ABC中,如果∠C>∠B,那么我們可以將△ABC沿BC的垂直平分線N折疊,使點(diǎn)B落在點(diǎn)C上,即∠CN=∠B,于是B=C,這樣AB=A+B=A+C>AC.
由上面的操作過程得到啟示,請(qǐng)寫出證明過程。

形成結(jié)論2:在一個(gè)三角形中,如果兩個(gè)角不等,那么它們所對(duì)的邊也不等,大角所對(duì)的邊較大。
四.練習(xí)與應(yīng)用
利用上述的兩個(gè)結(jié)論,回答下面問題:
(1)在△ABC中,已知BC>AB>AC,那么∠A、∠B、∠C有怎樣的大小關(guān)系?
(2)如果一個(gè)三角形中最大的邊所對(duì)的角是銳角,那么這個(gè)三角形一定是銳角三角形嗎?為什么?
(3)直角三角形的哪一條邊最大?為什么?
五.例題解析
例1.如圖,在△ABC中,∠C=90°,點(diǎn)在斜邊AB上,N垂直平分AC.
求證:C= AB.
分析:由線段垂直平分線性質(zhì)易知A=C,因此,只要證明C=B即可。


例2.在△ABC中,D是BC中點(diǎn)。
求證:AB+AC>2AD.
分析:用實(shí)驗(yàn)方式探究,將△ABC沿中線AD剪開,再拼成如下圖的△ABA’,就很快發(fā)現(xiàn)AB+AC>2AD. 由操作過程得到啟示,請(qǐng)寫出證明過程。


六.堂小結(jié)
1.本節(jié)通過實(shí)驗(yàn)探究的方式得到兩個(gè)結(jié)論:
(1)在一個(gè)三角形中,如果兩條邊不等,那么它們所對(duì)的角也不等,大邊所對(duì)的角較大。
(2)在一個(gè)三角形中,如果兩個(gè)角不等,那么它們所對(duì)的邊也不等,大角所對(duì)的邊較大。
2.從實(shí)驗(yàn)探究的過程可以發(fā)現(xiàn):利用圖形的翻折、旋轉(zhuǎn)等方法研究幾何圖形中的邊和角的大小關(guān)系是一種常用的方法。
七.布置作業(yè)
用一張長方形的紙片折出一個(gè)等邊三角形。(要求:簡要說明步驟和理由)




本文來自:逍遙右腦記憶 http://m.yy-art.cn/chuer/39674.html

相關(guān)閱讀:三角形的邊與角