高一數(shù)學(xué)《集合與簡易邏輯》教案

編輯: 逍遙路 關(guān)鍵詞: 高中數(shù)學(xué) 來源: 高中學(xué)習(xí)網(wǎng)

教材:邏輯聯(lián)結(jié)詞(1)
目的:要求了解復(fù)合命題的意義,并能指出一個(gè)復(fù)合命題是有哪些簡單命題與邏輯聯(lián)結(jié)詞,并能由簡單命題構(gòu)成含有邏輯聯(lián)結(jié)詞的復(fù)合命題。
過程:
一、提出課題:簡單邏輯、邏輯聯(lián)結(jié)詞
二、命題的概念:例:12>5 ① 3是12的約數(shù) ② 0.5是整數(shù) ③
定義:可以判斷真假的語句叫命題。正確的叫真命題,錯(cuò)誤的叫假命題。
如:①②是真命題,③是假命題
反例:3是12的約數(shù)嗎? x>5 都不是命題
不涉及真假(問題) 無法判斷真假
上述①②③是簡單命題。 這種含有變量的語句叫開語句(條件命題)。
三、復(fù)合命題:
1.定義:由簡單命題再加上一些邏輯聯(lián)結(jié)詞構(gòu)成的命題叫復(fù)合命題。
2.例:(1)10可以被2或5整除④ 10可以被2整除或10可以被5整除
(2)菱形的對(duì)角線互相 菱形的對(duì)角線互相垂直且菱形的
垂直且平分⑤ 對(duì)角線互相平分
(3)0 高二.5非整數(shù)⑥ 非“0.5是整數(shù)”
觀察:形成概念:簡單命題在加上“或”“且”“非”這些邏輯聯(lián)結(jié)詞成復(fù)合命題。
3.其實(shí),有些概念前面已遇到過
如:或:不等式 x2x6>0的解集 { x x<2或x>3 }
且:不等式 x2x6<0的解集 { x 2< x<3 } 即 { x x>2且x<3 }
四、復(fù)合命題的構(gòu)成形式
如果用 p, q, r, s……表示命題,則復(fù)合命題的形式接觸過的有以下三種:
即: p或q (如 ④) 記作 pq
p且q (如 ⑤) 記作 pq
非p (命題的否定) (如 ⑥) 記作 p
小結(jié):1.命題 2.復(fù)合命題 3.復(fù)合命題的構(gòu)成形式

本文來自:逍遙右腦記憶 http://m.yy-art.cn/gaozhong/46990.html

相關(guān)閱讀:幾何的三大問題