人教版七年級數(shù)學上冊全冊學案

編輯: 逍遙路 關鍵詞: 七年級 來源: 高中學習網(wǎng)
第一章 有理數(shù)
課題:1.1 正數(shù)和負數(shù)(1)
【學習目標】:1、掌握正數(shù)和負數(shù)概念;
2、會區(qū)分兩種不同意義的量,會用符號表示正數(shù)和負數(shù);
3、體驗數(shù)學發(fā)展是生活實際的需要,激發(fā)學生學習數(shù)學的興趣。
【重點難點】:正數(shù)和負數(shù)概念

【導學指導】:
一、知識鏈接:
1、小學里學過哪些數(shù)請寫出來: 、 、 。
2、閱讀課本P1和P2三幅圖(重點是三個例子,邊閱讀邊思考)
回答下面提出的問題:
3、在生活中,僅有整數(shù)和分數(shù)夠用了嗎?有沒有比0小的數(shù)?如果有,那叫做什么數(shù)?

二、自主學習
1、正數(shù)與負數(shù)的產(chǎn)生
(1)、生活中具有相反意義的量
如:運進5噸與運出3噸;上升7米與下降8米;向東50米與向西47米等都是生活中遇到的具有相反意義的量。
請你也舉一個具有相反意義量的例子: 。
(2)負數(shù)的產(chǎn)生同樣是生活和生產(chǎn)的需要

2、正數(shù)和負數(shù)的表示方法
(1)一般地,我們把上升、運進、零上、收入、前進、高出等規(guī)定為正的,而與它相反的量,如:下降、運出、零下、支出、后退、低于等規(guī)定為負的。正的量就用小學里學過的數(shù)表示,有時也在它前面放上一個“+”(讀作正)號,如前面的5、7、50;負的量用小學學過的數(shù)前面放上“—”(讀作負)號來表示,如上面的—3、—8、—47。
(2)活動 兩個同學為一組,一同學任意說意義相反的兩個量,另一個同學用正負數(shù)表示.
(3)閱讀P3練習前的內(nèi)容
3、正數(shù)、負數(shù)的概念
1)大于0的數(shù)叫做 ,小于0的數(shù)叫做 。
2)正數(shù)是大于0的數(shù),負數(shù)是 的數(shù),0既不是正數(shù)也不是負數(shù)。

【課堂練習】:

1. P3第一題到第四題(直接做在課本上)。

2.小明的姐姐在銀行工作,她把存入3萬元記作+3萬元,那么支取2萬元應記作_______,-4萬元表示________________。
3.已知下列各數(shù): , ,3.14,+3065,0,-239;
則正數(shù)有_____________________;負數(shù)有____________________。
4.下列結(jié)論中正確的是 …………………………………………( )
A.0既是正數(shù),又是負數(shù)B.O是最小的正數(shù)
C.0是最大的負數(shù) D.0既不是正數(shù),也不是負數(shù)
5.給出下列各數(shù):-3,0,+5, ,+3.1, ,2004,+2010;
其中是負數(shù)的有 ……………………………………………………( )
A.2個B.3個C.4個D.5個
【要點歸納】:
正數(shù)、負數(shù)的概念:
(1)大于0的數(shù)叫做 ,小于0的數(shù)叫做 。
(2)正數(shù)是大于0的數(shù),負數(shù)是 的數(shù),0既不是正數(shù)也不是負數(shù)。

【拓展訓練】:
1.零下15℃,表示為_________,比O℃低4℃的溫度是_________。
2.地圖上標有甲地海拔高度30米,乙地海拔高度為20米,丙地海拔高度為-5米,其中最高處為_______地,最低處為_______地.
3.“甲比乙大-3歲”表示的意義是______________________。
4.如果海平面的高度為0米,一潛水艇在海水下40米處航行,一條鯊魚在潛水艇上方10米處游動,試用正負數(shù)分別表示潛水艇和鯊魚的高度。

【總結(jié)反思】:

課題:1.1正數(shù)和負數(shù)(2)
【學習目標】:
1、會用正、負數(shù)表示具有相反意義的量;
2、通過正、負數(shù)學習,培養(yǎng)學生應用數(shù)學知識的意識;

【學習重點】:用正、負數(shù)表示具有相反意義的量;
【學習難點】:實際問題中的數(shù)量關系;
【導學指導】
一、知識鏈接.
通過上節(jié)課的學習,我們知道在實際生產(chǎn)和生活中存在著兩種不同意義的量,為了區(qū)分它們,我們用__________ 和___________ 來分別表示它們。

問題:“零”為什么即不是正數(shù)也不是負數(shù)呢?
引導學生思考討論,借助舉例說明。
參考例子:溫度表示中的零上,零下和零度。

二.自主探究

問題:(課本第4頁例題)
先引導學生分析,再讓學生獨立完成
例 (1)一個月內(nèi),小明體重增加2kg,小華體重減少1kg,小強體重無變化,寫出他們這個月的體重增長值;
2)2001年下列國家的商品進出口總額比上一年的變化情況是:
美國減少6.4%, 德國增長1.3%,
法國減少2.4%, 英國減少3.5%,
意大利增長0.2%, 中國增長7.5%.
寫出這些國家2001年商品進出口總額的增長率;

解:(1)這個月小明體重增長__________ ,小華體重增長_________ ,小強體重增長_________ ;

2)六個國家2001年商品進出口總額的增長率:
美國___________ 德國__________
法國___________ 英國__________
意大利__________ 中國__________

【課堂練習】
1.課本第4頁練習
2、閱讀思考

(課本第8頁)用正負數(shù)表示加工允許誤差;

問題:直徑為30.032mm和直徑為29.97的零件是否合格?

【要點歸納】
1、本節(jié)課你有那些收獲?
2、還有沒解決的問題嗎?

【拓展訓練】

1)甲冷庫的溫度是-12°C,乙冷庫的溫度比甲冷酷低5°C,則乙冷庫的溫度是 ;

2)一種零件的內(nèi)徑尺寸在圖紙上是9±0.05(單位:mm),表示這種零件的標準尺寸是9mm,加工要求最大不超過標準尺寸多少?最小不小于標準尺寸多少?
課題:1.2.1 有理數(shù)
【學習目標】:
1、掌握有理數(shù)的概念,會對有理數(shù)按一定標準進行分類,培養(yǎng)分類能力;
2、了解分類的標準與集合的含義;
3、體驗分類是數(shù)學上常用的處理問題方法;
【學習重點】:正確理解有理數(shù)的概念
【學習難點】:正確理解分類的標準和按照一定標準分類
【導學指導】
一、溫故知新
1、通過兩節(jié)課的學習,,那么你能寫出3個不同類的數(shù)嗎?.(4名學生板書)

__________________________________________
二、自主探究
問題1:觀察黑板上的12個數(shù),我們將這4位同學所寫的數(shù)做一下分類;
該分為幾類,又該怎樣分呢?先分組討論交流,再寫出來

分為 類,分別是:

引導歸納:
統(tǒng)稱為整數(shù), 統(tǒng)稱為有理數(shù)。
問題2:我們是否可以把上述數(shù)分為兩類?如果可以,應分為哪兩類?
師生共同交流、歸納
2、正數(shù)集合與負數(shù)集合
所有的正數(shù)組成 集合,所有的負數(shù)組成 集合

【課堂練習】
1、P8練習(做在課本上)
2.把下列各數(shù)填入它所屬于的集合的圈內(nèi):
15, - , -5, , , 0.1, -5.32, -80, 123, 2.333;

正整數(shù)集合 負整數(shù)集合

正分數(shù)集合 負分數(shù)集合

【要點歸納】:
有理數(shù)分類
或者
【拓展訓練】

1、下列說法中不正確的是……………………………………………( )
A.-3.14既是負數(shù),分數(shù),也是有理數(shù)
B.0既不是正數(shù),也不是負數(shù),但是整數(shù)
c.-2000既是負數(shù),也是整數(shù),但不是有理數(shù)
D.O是正數(shù)和負數(shù)的分界
2、在下表適當?shù)目崭窭锂嬌稀啊獭碧?br />有理數(shù)整數(shù)分數(shù)正整數(shù)負分數(shù)自然數(shù)
-8是
-2.25是

課題:1.2.2數(shù)軸
【學習目標】:
1、掌握數(shù)軸概念,理解數(shù)軸上的點和有理數(shù)的對應關系;
2、會正確地畫出數(shù)軸,利用數(shù)軸上的點表示有理數(shù);
3、領會數(shù)形結(jié)合的重要思想方法;
【重點難點】:數(shù)軸的概念與用數(shù)軸上的點表示有理數(shù);
【導學指導】
一、知識鏈接
1、觀察下面的溫度計,讀出溫度.分別是 °C、 °C、 °C;

2、在一條東西向的馬路上,有一個汽車站,汽車站東3m和7.5m處分別有一棵柳樹
和一棵楊樹,汽車站西3m和4.8m處分別有一棵槐樹和一根電線桿,試畫圖表示這一
情境?

汽車站
請同學們分小組討論,交流合作,動手操作

二、自主探究
1、由上面的兩個問題,你受到了什么啟發(fā)?能用直線上的點來表示有理數(shù)嗎?

2、自己動手操作,看看可以表示有理數(shù)的直線必須滿足什么條件?
引導歸納:
1)、畫數(shù)軸需要三個條件,即 、 方向和 長度。
2)數(shù)軸
【課堂練習】
1、請你畫好一條數(shù)軸


2、利用上面的數(shù)軸表示下列有理數(shù)
1.5, —2, 2, —2.5, , 0;
3、 寫出數(shù)軸上點A,B,C,D,E所表示的數(shù):
三、尋找規(guī)律
1、觀察上面數(shù)軸,哪些數(shù)在原點的左邊,哪些數(shù)在原點的右邊,由此你有什么發(fā)現(xiàn)?


2、每個數(shù)到原點的距離是多少?由此你又有什么發(fā)現(xiàn)?


3、進一步引導學生完成P9歸納

【要點歸納】:
畫數(shù)軸需要三個條件是什么?

【拓展練習】
1、在數(shù)軸上,表示數(shù)-3,2.6, ,0, , ,-1的點中,在原點左邊的點有 個。
2、在數(shù)軸上點A表示-4,如果把原點O向正方向移動1個單位,那么在新數(shù)軸上點A表示的數(shù)是( )
A.-5, B.-4 C.-3 D.-2
3、你覺得數(shù)軸上的點表示數(shù)的大小與點的位置有什么關系?

課題:1.2.3 相反數(shù)
【學習目標】:
1、掌握相反數(shù)的意義;
2、掌握求一個已知數(shù)的相反數(shù);
3、體驗數(shù)形結(jié)合思想;
【學習重點】:求一個已知數(shù)的相反數(shù);
【學習難點】:根據(jù)相反數(shù)的意義化簡符號。
【導學指導】
一、溫故知新
1、數(shù)軸的三要素是什么?在下面畫出一條數(shù)軸:

2、在上面的數(shù)軸上描出表示5、—2、—5、+2 這四個數(shù)的點。
3、觀察上圖并填空: 數(shù)軸上與原點的距離是2的點有 個,這些點表示的數(shù)是 ;與原點的距離是5的點有 個,這些點表示的數(shù)是 。

從上面問題可以看出,一般地,如果a是一個正數(shù),那么數(shù)軸上與原點的距離是a的點有兩個,即一個表示a,另一個是 ,它們分別在原點的左邊和右邊,我們說,這兩點關于原點對稱。

二、自主學習
自學課本第10、11的內(nèi)容并填空:

1、相反數(shù)的概念
像2和—2、5和—5、3和—3這樣,只有 不同的兩個數(shù)叫做互為相反數(shù)。
2、練習
(1)、2.5的相反數(shù)是 ,— 和 是互為相反數(shù), 的相反數(shù)是2010;
(2)、a和 互為相反數(shù),也就是說,—a是 的相反數(shù)
例如a=7時,—a=—7,即7的相反數(shù)是—7.
a=—5時,—a=—(—5),“—(—5)”讀作“-5的相反數(shù)”,而—5的相反數(shù)是5,所以,
—(—5)=5
你發(fā)現(xiàn)了嗎,在一個數(shù)的前面添上一個“—”號,這個數(shù)就成了原數(shù)的
(3)簡化符號:-(+0.75)= ,-(-68)= ,
-(-0.5 )= ,-(+3.8)= ;
(4)、0的相反數(shù)是 .
3、數(shù)軸上表示相反數(shù)的兩個點和原點的距離 。

【課堂練習】 P11第1、2、3題

【要點歸納】:
1、本節(jié)課你有那些收獲?
2、還有沒解決的問題嗎?

【拓展訓練】
1.在數(shù)軸上標出3,-1.5,0各數(shù)與它們的相反數(shù)。
  

2.-1.6的相反數(shù)是 ,2x的相反數(shù)是 ,a-b的相反數(shù)是 ;
  
3. 相反數(shù)等于它本身的數(shù)是 ,相反數(shù)大于它本身的數(shù)是 ;

4.填空:
(1)如果a=-13,那么-a= ;
(2)如果-a=-5.4,那么a= ;
(3)如果-x=-6,那么x= ;
(4)-x=9,那么x= ;
5.數(shù)軸上表示互為相反數(shù)的兩個數(shù)的點之間的距離為10,求這兩個數(shù)。

課題:1.2.4絕對值
【學習目標】:
1、理解、掌握絕對值概念.體會絕對值的作用與意義;
2、掌握求一個已知數(shù)的絕對值和有理數(shù)大小比較的方法;
3、體驗運用直觀知識解決數(shù)學問題的成功;

【重點難點】:絕對值的概念與兩個負數(shù)的大小比較
【導學指導】
一、知識鏈接
問題:如下圖
小紅和小明從同一處O出發(fā),分別向東、西方向行走10米,他們行走的路線 (填相同或不相同),他們行走的距離(即路程遠近)

二、自主探究
1、由上問題可以知道,10到原點的距離是 ,—10到原點的距離也是
到原點的距離等于10的數(shù)有 個,它們的關系是一對 。
這時我們就說10的絕對值是10,—10的絕對值也是10;
例如,—3.8的絕對值是3.8;17的絕對值是17;—6 的絕對值是
一般地,數(shù)軸上表示數(shù)a的點與原點的距離叫做數(shù)a的絕對值,記作?a?。
2、練習
(1)、式子?-5.7?表示的意義是 。
(2)、—2的絕對值表示它離開原點的距離是 個單位,記作 ;
(3)、?24?= . ?—3.1?= ,?— ?= ,?0?= ;
3、思考、交流、歸納
由絕對值的定義可知:一個正數(shù)的絕對值是 ;一個負數(shù)的絕對值是它的 ;
0的絕對值是 。

用式子表示就是:
1)、當a是正數(shù)(即a>0)時,?a?= ;
2)、當a是負數(shù)(即a<0)時,?a?= ;
3)、當a=0時,?a?= ;

4、隨堂練習 P12第1、2大題(直接做在課本上)

5、閱讀思考,發(fā)現(xiàn)新知
閱讀P12問題—P13第12行,你有什么發(fā)現(xiàn)嗎?
在數(shù)軸上表示的兩個數(shù),右邊的數(shù)總要 左邊的數(shù)。
也就是:
1)、正數(shù) 0,負數(shù) 0,正數(shù)大于負數(shù)。
2)、兩個負數(shù),絕對值大的 。
【課堂練習】:
1、自學例題 P13 (教師指導)

2、比較下列各對數(shù)的大。骸3和—5; —2.5和—?—2.25?
【要點歸納】:
一個正數(shù)的絕對值是 ;一個負數(shù)的絕對值是它的 ;
0的絕對值是 。

【拓展練習】
1.如果 ,則 的取值范圍是 …………………………( )
A. >OB. ≥OC. ≤OD. <O
2. ,則 ; ,則 .
3.如果 ,則 , .
4.絕對值等于其相反數(shù)的數(shù)一定是…………………………………( )
A.負數(shù) B.正數(shù) C.負數(shù)或零 D.正數(shù)或零

5.給出下列說法:
①互為相反數(shù)的兩個數(shù)絕對值相等;②絕對值等于本身的數(shù)只有正數(shù);
③不相等的兩個數(shù)絕對值不相等; ④絕對值相等的兩數(shù)一定相等.
其中正確的有…………………………………………………( )
A.0個B.1個C.2個D.3個
課題:1.3.1有理數(shù)的加法(1)
【學習目標】:
1、理解有理數(shù)加法意義,掌握有理數(shù)加法法則,會正確進行有理數(shù)加法運算;
2、會利用有理數(shù)加法運算解決簡單的實際問題;
【學習重點】:有理數(shù)加法法則
【學習難點】:異號兩數(shù)相加
【導學指導】
一、知識鏈接
1、正有理數(shù)及0的加法運算,小學已經(jīng)學過,然而實際問題中做加法運算的數(shù)有可能超出正數(shù)范圍。例如,足球循環(huán)賽中,可以把進球數(shù)記為正數(shù),失球數(shù)記為負數(shù),它們的和叫做凈勝球數(shù)。如果,紅隊進4個球,失2個球;藍隊進1個球,失1個球。
于是紅隊的凈勝球數(shù)為 4+(-2),
藍隊的凈勝球數(shù)為 1+(-1)。
這里用到正數(shù)和負數(shù)的加法。那么,怎樣計算4+(-2)
下面我們一起借助數(shù)軸來討論有理數(shù)的加法。
二、自主探究
1、借助數(shù)軸來討論有理數(shù)的加法
1)如果規(guī)定向東為正,向西為負,那么一個人向東走4米,再向東走2米,兩次共向東走了 米,這個問題用算式表示就是:

2)如果規(guī)定向東為正,向西為負,那么一個人向西走2米,再向西走4米,兩
次共向西走多少米?很明顯,兩次共向西走了 米。
這個問題用算式表示就是:
如圖所示:

3)如果向西走2米,再向東走4米, 那么兩次運動后,這個人從起點向東走了 米,寫成算式就是 這個問題用數(shù)軸表示如下圖所示:

4)利用數(shù)軸,求以下情況時這個人兩次運動的結(jié)果:
①先向東走3米,再向西走5米,這個人從起點向( )走了( )米;
②先向東走5米,再向西走5米,這個人從起點向( )走了( )米;
③先向西走5米,再向東走5米,這個人從起點向( )走了( )米。
寫出這三種情況運動結(jié)果的算式

5)如果這個人第一秒向東(或向西)走5米,第二秒原地不動,兩秒后這個人
從起點向東(或向西)運動了 米。寫成算式就是
2、師生歸納兩個有理數(shù)相加的幾種情況。
3.你能從以上幾個算式中發(fā)現(xiàn)有理數(shù)加法的運算法則嗎?
有理數(shù)加法法則
(1)同號的兩數(shù)相加,取 的符號,并把 相加。
(2)絕對值不相等的異號兩數(shù)相加,取 的加數(shù)的符號,并用較大的絕對值 較小的絕對值. 互為相反數(shù)的兩個數(shù)相加得 ;
(3)一個數(shù)同0相加,仍得 。
4.新知應用
例1 計算(自己動動手吧。
(1) (-3)+(-9); (2) (-4.7)+3.9.

例2 (自己獨立完成)
【課堂練習】:
1.填空:(口答)
(1)(-4)+(-6)= ; (2)3+(-8)= ;
(4)7+(-7)= ; (4)(-9)+1 = ;
(5)(-6)+0 = ; (6)0+(-3) = ;
2. 課本P18第1、2題
【要點歸納】:
有理數(shù)加法法則:

【拓展訓練】:
1.判斷題:
(1)兩個負數(shù)的和一定是負數(shù);
(2)絕對值相等的兩個數(shù)的和等于零;
(3)若兩個有理數(shù)相加時的和為負數(shù),這兩個有理數(shù)一定都是負數(shù);
(4)若兩個有理數(shù)相加時的和為正數(shù),這兩個有理數(shù)一定都是正數(shù)。

2.已知│a│= 8,│b│= 2;
(1)當a、b同號時,求a+b的值;
(2)當a、b異號時,求a+b的值。

課題:1.3.1有理數(shù)的加法(2)
【學習目標】:掌握加法運算律并能運用加法運算律簡化運算;

【重點難點】:靈活運用加法運算律簡化運算;
【導學指導】
一、溫故知新
1、想一想,小學里我們學過的加法運算定律有哪些?先說說,再用字母表示寫在下面: 、

2、計算
⑴ 30 +(-20)= (-20)+30=
⑵ [ 8 +(-5)] +(-4)= 8 + [(-5)]+(-4)]=

思考:觀察上面的式子與計算結(jié)果,你有什么發(fā)現(xiàn)?

二、自主探究
1、請說說你發(fā)現(xiàn)的規(guī)律
2、自己換幾個數(shù)字驗證一下,還有上面的規(guī)律嗎
3、由上可以知道,小學學習的加法交換律、結(jié)合律在有理數(shù)范圍內(nèi)同樣適應,

即:兩個數(shù)相加,交換加數(shù)的位置,和 .式子表示為

三個數(shù)相加,先把前兩個數(shù)相加,或者先把后兩個數(shù)相加,和
用式子表示為
想想看,式子中的字母可以是哪些數(shù)?

例1 計算: 1)16 +(-25)+ 24 +(-35)

2)(—2.48)+(+4.33)+(—7.52)+(—4.33)

例2 每袋小麥的標準重量為90千克,10袋小麥稱重記錄如下:
91 91 91.5 89 91.2 91.3 88.7 88.8 91.8 91.1
10袋小麥總計超過多少千克或不足多少千克?10袋小麥的總重量是多少千克?
想一想,你會怎樣計算,再把自己的想法與同伴交流一下。
【課堂練習】
課本P20頁練習 1、2

【要點歸納】:
你會用加法交換律、結(jié)合律簡化運算了嗎?

【拓展訓練】
1.計算:
(1)(-7)+ 11 + 3 +(-2); (2)
2.絕對值不大于10的整數(shù)有 個,它們的和是 .

3、填空:
(1)若a>0,b>0,那么a+b 0.
(2)若a<0,b<0,那么a+b 0.
(3)若a>0,b<0,且│a│>│b│那么a+b 0.
(4)若a<0,b>0,且│a│>│b│那么a+b 0.

3.某儲蓄所在某日內(nèi)做了7件工作,取出950元,存入5000元,取出800元,存入12000元,取出10000元,取出2000元.問這個儲蓄所這一天,共增加多少元?

課題:1.3.2有理數(shù)的減法(1)
【學習目標】:
1、經(jīng)歷探索有理數(shù)減法法則的過程.理解并掌握有理數(shù)減法法則;
2、會正確進行有理數(shù)減法運算;
3、體驗把減法轉(zhuǎn)化為加法的轉(zhuǎn)化思想;
【重點難點】:有理數(shù)減法法則和運算

【導學指導】
一、知識鏈接
1、世界上最高的山峰珠穆郎瑪峰海拔高度約是8844米,吐魯番盆地的海拔高度約為 —154米,兩處的高度相差多少呢?
試試看,計算的算式應該是 .能算出來嗎,畫草圖試試
2、長春某天的氣溫是?2°C~3°C,這一天的溫差是多少呢?(溫差是最高氣溫減最低氣溫,單位:°C)顯然,這天的溫差是3?(?2);
想想看,溫差到底是多少呢?那么,3?(?2)= ;
二、自主探究
1、還記得嗎,被減數(shù)、減數(shù)差之間的關系是:被減數(shù)—減數(shù)= ;
差+減數(shù)= 。
2、請你與同桌伙伴一起探究、交流:
要計算3?(?2)=?,實際上也就是要求:?+(—2)=3,所以這個數(shù)(差)應該是 ;也就是3?(?2)=5;
再看看,3+2= ;所以3?(?2) 3+2;
由上你有什么發(fā)現(xiàn)?請寫出來 .
3、換兩個式子計算一下,看看上面的結(jié)論還成立嗎?
—1—(—3)= , —1+3= ,所以—1—(—3) —1+3;
0—(—3)= , 0+3= ,所以0—(—3) 0+3;
4、師生歸納
1)法則:
2)字母表示:

三、新知應用
1、例題
例1計算:
(1) (-3)?(?5); (2)0-7;
(3) 7.2?(?4.8); (4)-3 ;
請同學們先嘗試解決

【課堂練習】課本 P23 1.2
【要點歸納】:
有理數(shù)減法法則:

【拓展訓練】
1、計算:
(1)(-37)-(-47); (2)(-53)-16;
(3)(-210)-87; (4)1.3-(-2.7);
(5)(-2 )-(-1 );

2.分別求出數(shù)軸上下列兩點間的距離:
(1)表示數(shù)8的點與表示數(shù)3的點;
(2)表示數(shù)-2的點與表示數(shù)-3的點;

課題:1.3.2 有理數(shù)的減法(2)
【學習目標】:
1、理解加減法統(tǒng)一成加法運算的意義;
2、會將有理數(shù)的加減混合運算轉(zhuǎn)化為有理數(shù)的加法運算;
【重點難點】:有理數(shù)加減法統(tǒng)一成加法運算;
【導學指導】
一、知識鏈接
1、一架飛機作特技表演,起飛后的高度變化如下表:
高度的變化上升4.5千米下降3.2千米上升1.1千米下降1.4千米
記作+4.5千米—3.2千米+1.1千米—1.4千米

請你們想一想,并和同伴一起交流,算算此時飛機比起飛點高了 千米。

2、你是怎么算出來的,方法是
二、自主探究
1、現(xiàn)在我們來研究(—20)+(+3)—(—5)—(+7),該怎么計算呢?還是先自己獨立動動手吧!
2、怎么樣,計算出來了嗎,是怎樣計算的,與同伴交流交流,師巡視指導。
3、師生共同歸納:遇到一個式子既有加法,又有減法,第一步應該先把減法轉(zhuǎn)化為     .再把加號記在腦子里,省略不寫

如:(-20)+(+3)-(-5)-(+7) 有加法也有減法
=(-20)+(+3)+(+5)+(-7) 先把減法轉(zhuǎn)化為加法
= -20+3+5-7 再把加號記在腦子里,省略不寫
可以讀作:“負20、正3、正5、負7的 ”或者“負20加3加5減7”.
4、師生完整寫出解題過程

課題:1.4.1有理數(shù)的乘法(1)
【學習目標】:
1、理解有理數(shù)的運算法則;能根據(jù)有理數(shù)乘法運算法則進行有理的簡單運算;
2、經(jīng)歷探索有理數(shù)乘法法則過程,發(fā)展觀察、歸納、猜想、驗證能力;
【重點難點】:有理數(shù)乘法法則
【導學指導】
一、溫故知新
1.有理數(shù)加法法則內(nèi)容是什么?

2.計算
(1)2+2+2= (2)(-2)+(-2)+(-2)=
3.你能將上面兩個算式寫成乘法算式嗎?

二、自主探究
1、自學課本28-29頁回答下列問題
(1)如果它以每分2cm的速度向右爬行,3分鐘后它在什么位置?
可以表示為 .
( 2)如果它以每分2cm的速度向左爬行,3分鐘后它在什么位置?
可以表示為

(3) 如果它以每分2cm的速度向右爬行,3分鐘前它在什么位置?
可以表示為
(4)如果它以每分2cm的速度向左爬行,3分鐘前它在什么位置?
可以表示為

由上可知:
(1) 2×3 = ; (2)(-2)×3 = ;
(3)(+2)×(-3)= ; (4)(-2)×(-3)= ;
(5)兩個數(shù)相乘,一個數(shù)是0時,結(jié)果為0

觀察上面的式子, 你有什么發(fā)現(xiàn)?能說出有理數(shù)乘法法則嗎?

歸納有理數(shù)乘法法則
兩數(shù)相乘,同號 ,異號 ,并把 相乘。
任何數(shù)與0相乘,都得 。

2、直接說出下列兩數(shù)相乘所得積的符號

【課堂練習】
課本30頁練習1.2.3(直接做在課本上)

【要點歸納】:
有理數(shù)乘法法則:

課題:1.4.1有理數(shù)的乘法(2)
【學習目標】:
1、經(jīng)歷探索多個有理數(shù)相乘的符號確定法則;
2、會進行有理數(shù)的乘法運算;
3、通過對問題的探索,培養(yǎng)觀察、分析和概括的能力;
【學習重點】:多個有理數(shù)乘法運算符號的確定;
【學習難點】:正確進行多個有理數(shù)的乘法運算;
【導學指導】
一、溫故知新
1、有理數(shù)乘法法則:

二、自主探究
1、 觀察:下列各式的積是正的還是負的?
2×3×4×(-5),
2×3×(-4)×(-5),
2×(-3)× (-4)×(-5),
(-2) ×(-3) ×(-4) ×(-5);

思考:幾個不是0的數(shù)相乘,積的符號與負因數(shù)的個數(shù)之間有什么關系?
分組討論交流,再用自己的語言表達所發(fā)現(xiàn)的規(guī)律:

幾個不是0的數(shù)相乘,負因數(shù)的個數(shù)是 時,積是正數(shù);
負因數(shù)的個數(shù)是 時,積是負數(shù)。
2、新知應用
1、例題3,(P31頁)

請你思考,多個不是0的數(shù)相乘,先做哪一步,再做哪一步?


你能看出下列式子的結(jié)果嗎?如果能,理由
7.8×(-8.1)×O× (-19.6)
師生小結(jié):
【課堂練習】
計算:(課本P32練習)
(1)、—5×8×(—7)×(—0.25); (2)、 ;
【要點歸納】:
1.幾個不是0的數(shù)相乘,負因數(shù)的個數(shù)是 時,積是正數(shù);
負因數(shù)的個數(shù)是 時,積是負數(shù)。
2.幾個數(shù)相乘,如果其中有一個因數(shù)為0,積等于0;

【拓展訓練】:
一、選擇
1.若干個不等于0的有理數(shù)相乘,積的符號( )
A.由因數(shù)的個數(shù)決定 B.由正因數(shù)的個數(shù)決定
C.由負因數(shù)的個數(shù)決定 D.由負因數(shù)和正因數(shù)個數(shù)的差為決定
2.下列運算結(jié)果為負值的是( )
A.(-7)×(-6) B.(-6)+(-4) C. 0×(-2)(-3) D.(-7)-(-15)
3.下列運算錯誤的是( )
A.(-2)×(-3)=6 B.
C.(-5)×(-2)×(-4)=-40 D.(-3)×(-2)×(-4)=-24
二、計算:
1.4.1課題:有理數(shù)的乘法(3)
【學習目標】:
1、熟練有理數(shù)的乘法運算并能用乘法運算律簡化運算;
2、學生通過觀察、思考、探究、討論,主動地進行學習;
【學習重點】:正確運用運算律,使運算簡化
【學習難點】:運用運算律,使運算簡化
【導學指導】
一、知識鏈接
1、請同學們計算.并比較它們的結(jié)果:

(1) (-6)×5= 5×(-6)=

(2) [3×(-4)]×(-5)= 3×[(-4)×(-5)]=

請以小組為單位,相互檢查,看計算對了嗎?

二、自主探究
1、下面我們以小組為單位,仔細觀察上面的式子與結(jié)果,把你的發(fā)現(xiàn)相互交流交流。
2、怎么樣,在有理數(shù)運算律中,乘法的交換律,結(jié)合律以及分配律還成立嗎?
3、歸納、總結(jié)
乘法交換律:兩個數(shù)相乘,交換因數(shù)的位置,積 。
即:ab=
乘法結(jié)合律:三個數(shù)相乘,先把前兩個數(shù)相乘,或者先把后兩個數(shù)相乘,積
即:(ab)c=
4、新知應用
例題4
用兩種方法計算 ( + - )×12 ;
課題:1.4.2有理數(shù)的除法(1)
【學習目標】:
1、理解除法是乘法的逆運算;
2、理解倒數(shù)概念,會求有理數(shù)的倒數(shù);
3、掌握除法法則,會進行有理數(shù)的除法運算;

【重點難點】:有理數(shù)的除法法則

【導學指導】
一、知識鏈接
1)、小紅從家里到學校,每分鐘走50米,共走了20分鐘。
問小紅家離學校有 米,列出的算式為 。

2)放學時,小紅仍然以每分鐘50米的速度回家,應該走 分鐘。
列出的算式為

從上面這個例子你可以發(fā)現(xiàn),有理數(shù)除法與乘法之間的關系是

3)寫出下列各數(shù)的倒數(shù)
-4 的倒數(shù) ,3的倒數(shù) ,-2的倒數(shù) ;
二、合作交流、探究新知
1、小組合作完成
比較大。8÷(-4) 8×(一 );
(-15)÷3 (-15)× ;
(一1 )÷(一2) (-1 )×(一 );

再相互交流、并與小學里學習的乘除方法進行類比與對比,
歸納有理數(shù)的除法法則:
1)、除以一個不等于0的數(shù),等于 ;
2)、兩數(shù)相除,同號得 ,異號得 ,并把絕對值相 ,0除以任何一個不等于0的數(shù),都得 ;

1.自學P34例5、例6
【課堂練習】

1、練習:P35

2、練習: P36第1、2題

【要點歸納】:
有理數(shù)的除法法則:
課題:1.4.2有理數(shù)的除法(2)
【學習目標】:
1、學會用計算器進行有理數(shù)的除法運算;
2、掌握有理數(shù)的混合運算順序;
【學習重點】:有理數(shù)的混合運算;
【學習難點】:運算順序的確定與性質(zhì)符號的處理;
【導學指導】
一、知識鏈接
1、計算
(1) (-8)÷(-4);
(2) (-9)÷3 ;
(3) (—0.1)÷ ×(—100);
2. 有理數(shù)的除法法則:
二、自主探究
1.例8 計算
(1)(—8)+4÷(-2) (2)(-7)×(-5)—90÷(-15)
你的計算方法是先算 法,再算 法。Xk b 1 . co m
有理數(shù)加減乘除的混合運算順序應該是
寫出解答過程

【課堂練習】
1、計算(P36練習)
(1)6—(—12)÷(—3); ( 2)3×(—4)+(—28)÷7;

(3)(—48)÷8—(—25)×(—6); ( 4) ;

2.P37練習
【拓展訓練】
1、選擇題
(1)下列運算有錯誤的是( )
A. ÷(-3)=3×(-3) B.
C.8-(-2)=8+2 D.2-7=(+2)+(-7)
(2)下列運算正確的是( )
A. ; B.0-2=-2; C. ; D.(-2)÷(-4)=2;
2、計算
1)、18—6÷(—2)× ; 2)11+(—22)—3×(—11);
【總結(jié)反思】:
課題:1.5.1有理數(shù)的乘方(1)
【學習目標】:
1、理解有理數(shù)乘方的意義;
2、掌握有理數(shù)乘方運算;
3、經(jīng)歷探索有理數(shù)乘方的運算,獲得解決問題經(jīng)驗;
【重點難點】:有理數(shù)乘方的運算。

【導學指導】
一、知識鏈接
1、看下面的故事:從前,有個“聰明的乞丐”他要到了一塊面包。他想,天天要飯?zhí)量,如果我第一天吃這塊面包的一半,第二天再吃剩余面包的一半,……依次每天都吃前一天剩余面包的一半,這樣下去,我就永遠不要去要飯了!
請你們交流討論,再算一算,如果把整塊面包看成整體“1”,那第十天他將吃到面包      。
2、拉面館的師傅用一根很粗的面條,把兩頭捏合在一起拉伸,再捏合,再拉伸,反復多次,就能把這根很粗的面條,拉成許多很細的面條.想想看,捏合   次后,就可以拉出32根面條.
二、合作探究
1、分小組合作學習P41頁內(nèi)容,然后再完成好下面的問題
1)                 叫乘方,         叫做冪,在式子an中 ,a叫做   ,n叫做   
2)式子an表示的意義是                 
3)從運算上看式子an,可以讀作            ,從結(jié)果上看式子an,可以讀作               。
2、新知應用
1、將下列各式寫成乘方(即冪)的形式:
(1)(-2)×(-2)×(-2)×(-2)=      .
(2)、(— )×(— )×(— )×(— )=       。
(3) ? ?? ??……? (2010個)=       
2、例題,P41例1師生共同完成
從例題1 可以得出:
負數(shù)的奇次冪是 數(shù),負數(shù)的偶次冪是 數(shù),
正數(shù)的任何次冪都是 數(shù),0的任何正整次冪都是 ;
3、思考:(—2)4和—24意義一樣嗎?為什么?
4、自學例2 (教師指導)

【課堂練習】完成P42頁1,2.

【要點歸納】:

【拓展訓練】
1、我們已經(jīng)學習了五種運算,請把下表補充完整:
運算加減乘除乘方
運算結(jié)果和

課題:1.5.1有理數(shù)的乘方(2)
【學習目標】:
1、能確定有理數(shù)加、減、乘、除、乘方混合運算的順序;
2、會進行有理數(shù)的混合運算;
3、培養(yǎng)并提高正確迅速的運算能力;
【學習重點】:運算順序的確定和性質(zhì)符號的處理;
【學習難點】:有理數(shù)的混合運算;

【導學指導】
一、知識鏈接
1、在2+錯誤!不能通過編輯域代碼創(chuàng)建對象。×(-6)這個式子中,存在著 種運算。
2、請你們以4人一個小組討論、交流,上面這個式子應該先算 、再算
、最后算 。
二、合作探究

本文來自:逍遙右腦記憶 http://m.yy-art.cn/chuyi/58787.html

相關閱讀:七年級數(shù)學上冊全冊教案(新課標人教版)