2017學(xué)年第二學(xué)期期中檢測
九年級數(shù)學(xué)問卷
本試卷共4頁,25小題,滿分150分.考試時間120分鐘.可以 使用計算器,用2B鉛筆畫圖,所有答案都要寫在答卷上,答在問卷上的答案無效。
一、選擇題(本大題共10小題,每小題3分,滿分30分.在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的)
1.如果“盈利5%”記作+5%,那么—3%表示( * ).
A.虧損3% B.虧損2% C.盈利3% D.盈利2%
2.下列圖形中,既是軸對稱圖形又是中心對稱圖形的是( * ).
A. B. C. D.
3.若一個三角形的兩邊長分別為5和8,則第三邊長可能是( * ).
A.15 B.10 C.3 D.2
4.下列運(yùn)算正確的是( * ).
A. B.
C. D.
5.如圖1是一個幾何體的三視圖,則該幾何體的展開圖可以是( * ).
A. B. C. D.
6.方程 的解是( * ).
A. B. C. D.
7.某車間20名工人日加工零件數(shù)如下表所示:
日加工零件數(shù) 4 5 6 7 8
人數(shù) 2 6 5 4 3
這些工人日加工零件數(shù)的眾數(shù)、中位數(shù)、平均數(shù)分別是( * ).
A.5、6、5 B.5、5、6 C.6、5、6 D.5、6、6
8.若代數(shù)式 在實(shí)數(shù)范圍內(nèi)有意義,則 的取值范圍是( * ).
A. B. C. D. 且
9.如圖2,△ABC是等邊三角形,D是BC邊上一點(diǎn),將△ABD繞點(diǎn)A逆時針旋轉(zhuǎn)60°得到△ACE,連接DE,則下列說法不一定正確的是( * ).
A.△ADE是等邊三角形 B.A B∥CE
C.∠BAD=∠DEC D.AC=CD+CE
10.已知二次函數(shù) 的圖象如圖3所示,則反比例函數(shù) 與一次函數(shù) 的圖象可能是( * ).
A. B. C. D.
二、填空題(本大題共6小題,每小題3分,滿分18分)
11.分解因式: = * .
12.近年來,國家重視精準(zhǔn)扶貧,收效顯著,據(jù)統(tǒng)計約65 000 000人脫貧.將65 000 000用科學(xué)記數(shù)法表示為 * .
13.若實(shí)數(shù) 、 滿足 ,則 * .
14.如圖4, 中, 是 的垂直平分線, 交 于點(diǎn) ,連接BE,若∠C=40°,則∠AEB= * .
15.如圖5,⊙O是△ABC的外接圓,∠A=45°,BC= ,則劣弧 的長是 * .(結(jié)果保留π)
16. 如圖6,E、F分別是正方形ABCD的邊AD、CD上的點(diǎn),且AE=DF,AF、BE相交于點(diǎn)P,設(shè)AB= ,AE= ,則下列結(jié)論:①△ABE≌△DAF;②AF⊥BE;
③ ;④若 ,連接BF,則tan∠EBF= .其中正確的結(jié)論
是 * .(填寫所有正確結(jié)論的序號)
三、解答題(本大題共9小題 ,滿分102 分.解答應(yīng)寫出文字說明、證明過程或演算步驟)
17.(本小題滿分9分)
解不等式組:
18.(本小題滿分9分)
如圖7,點(diǎn)C、F、E、B在一條直線上,CD=BA,CE=BF,DF= AE,求證:∠B=∠C.
19.(本小題滿分10分)
某校為了解學(xué)生對新聞、體育、動畫、娛樂、戲曲五類電視節(jié)目的喜愛情況,隨機(jī)選取該校部分學(xué)生進(jìn)行調(diào)查,要求每名學(xué)生從中只選一類最喜愛的電視節(jié)目,以下是根據(jù)調(diào)查結(jié)果繪制的不完整統(tǒng)計表,根據(jù)表中信息,回答下列問題:
喜愛的電視節(jié)目類型 人數(shù) 頻率
新聞 4 0.08
體育 / /
動畫 15 /
娛樂 18 0.36
戲曲 / 0.06
(1)本次共調(diào)查了__* __名學(xué)生,若將各類電視節(jié)目喜愛的人數(shù)所占比例繪制成扇形統(tǒng)計圖,則“喜愛動畫”對應(yīng)扇形的圓心角度數(shù)是__* __;
(2)該校共有2000名學(xué)生,根據(jù)調(diào)查結(jié)果估計該校“喜愛體育”節(jié)目的學(xué)生人數(shù);
(3)在此次問卷調(diào)查中,甲、乙兩班分別有 人喜愛新聞節(jié)目,若從這 人中隨機(jī)抽取 人去參加“新聞小記者”培訓(xùn),求抽取的 人來自不同班級的概率.
20.(本小題滿分10分)
如圖8,□ABCD中,AB=2,BC= .
(1)利用尺規(guī)作∠ABC的平分線BE,交AD于點(diǎn)E;(保留作圖痕跡,不寫作法)
(2)記 ,先化簡 ,再求 的值.
21.(本小題滿分12分)
如圖9,C地在A地的正東方向,因有大山阻隔,由A地到C地需繞行B地,現(xiàn)計劃開鑿隧道使A、C兩地直線貫通,經(jīng)測量得:B地在A地的北偏東67°方向,距離A地280km,C地在B地南偏東的30°方向.
(1)求B地到直線AC的距離;
(2)求隧道開通后與隧道開通前相比,從A地到C地的路程將縮短多少?
(本題結(jié)果都精確到0.1km)
22.(本小題滿分12分)
如圖10,菱形ABCD的對角線AC、BD相交于點(diǎn)O,點(diǎn)E、F分別是AB、AD的中點(diǎn).
(1)若AC=10,BD=24,求菱形ABCD的周長;
(2)連接OE、OF,若AB⊥BC,則四邊形AEOF是什么特殊四邊形?請說明理由.
23.(本小題滿分12分)
已知反比例函數(shù) 的圖象經(jīng)過點(diǎn)A,且點(diǎn)A到x軸的距離是4.
(1) 求點(diǎn)A的坐標(biāo);
(2) 點(diǎn) 為坐標(biāo)原點(diǎn),點(diǎn) 是x軸正半軸上一點(diǎn),當(dāng) 時,求直線AB的解析式.
24.(本小題滿分14分)
如圖11,⊙O是△ABC的內(nèi)切圓.
(1)若∠A=60°,連接BO、CO并延長,分別交AC、AB于點(diǎn)D、E,
① 求∠BOC的度數(shù);
② 試探究BE、CD、BC之間的等量關(guān)系,并證明你的結(jié)論;
(2)若AB=AC=10,sin∠ABC= ,AC、AB與⊙O相切于點(diǎn)D、E,將BC向上平移與⊙O交于點(diǎn)F、G,若以D、E、F、G為頂點(diǎn)的四邊形是矩形,求平移的距離.
25.(本小題滿分14分)
已知拋物線 .
(1)求證:拋物線與 軸必定有公共點(diǎn);
(2)若P( ,y1),Q(-2,y2)是拋物線上的兩點(diǎn),且y1 y2,求 的取值范圍;
(3)設(shè)拋物線與x軸交于點(diǎn) 、 ,點(diǎn)A在點(diǎn)B的左側(cè),與y軸負(fù)半軸交于點(diǎn)C,且 ,若點(diǎn)D是直線BC下方拋物線上一點(diǎn),連接AD交BC于點(diǎn)E,
記△ACE的面積為S1,△DCE的面積為S2,求 是否有最值?若有,求出該最值;若沒有,請說明理由.
2017學(xué)年第二學(xué)期期中檢測
九年級數(shù)學(xué)答案與評分標(biāo)準(zhǔn)
一、選擇題(本大題共有10小題,每小題3分,滿分30分)
題號 1 2 3 4 5 6 7 8 9 10
答案 A C B A B D D C C A
二、填空題(本大題共有6小題,每小題3分,滿分18分)
11. 12. 13.
14. 15. 16.①②③④
評分細(xì)則:第16題寫對一個或二個給1分,寫對三個給2分,全部寫對給3分。
三、解答題(本大題共9小題,滿分102 分.解答應(yīng)寫出文字說明、證明過程或演算步驟)
17.解:
由①得x>-3,……………………3分
由②得x≤1. ……………………6分
不等式組的解集在數(shù)軸上表示為:
……………8分
∴原不等式組的解集為 -3<x≤1. ………………9分
18.證明:∵CE=BF, ∴CF=BE ………………4分
在△BAE與 △CDF中
∴ △BAE≌△CDF(SSS) …………7分
∴ ∠B=∠C ………… 9分
19.解:(1)50,108°………… 4分
(2)2000× =400人………… 6分
(3)設(shè)甲班的兩人為甲1、甲2,乙班的兩人為乙1、乙2,畫樹狀圖如下:
………… 8分
從樹狀圖可以看出,共有12種等可能的結(jié)果,其中抽取的 人來自不同班級的結(jié)果有8種 ………… 9分
∴ 抽取的 人來自不同班級的概率是 ………… 10分
20.(1)解:如圖,BE為所求作的角平分線 …………3分
(2) 在□ABCD中, 得 AD∥BC
∴ ∠AEB=∠EBC…………4分
又 ∠ABE=∠EBC
∴ ∠AEB=∠ABE
∴ AB=AE=
∴ DE= …………5分
…………9分
當(dāng) 時, …………10分
21.(1)解:如圖,作BD⊥AC于點(diǎn)D,………1分
在Rt△ABD中,∠ABD=67°, AB=280
∵ ,
∴ ………5分
答:B地到直線AC的距離約為109.4km.
(2) ∵
∴ ………7分
在Rt△BCD中,∠CBD=30°
,∴ ………9分
∴ ………10分 ………11分
∴
答:隧道開通后與隧道開通前相比,從A地到C地的路程將縮短85.4km.………12分
22.解: (1)∵四邊形ABCD是菱形
∴AO=CO,BO=DO,AC⊥BD…………3分
∵AC=10,BD=24
∴ AO=5,BO=12 …………4分
∴AB=13 …………5分
∴菱形ABCD的周長是52 …………6分
(2)若AB⊥BC,則四邊形AEOF是正方形, 理由如下:…………7分
∵E、O分別是AB、BD中點(diǎn),∴OE∥AD, 即:OE∥AF
同理可證:OF∥AE
∴四邊形AEOF是平行四邊形…………9分
∵AB=AD,∴AE=AF
∴平行四邊形AEOF是菱形 …………11分
∵AB⊥BC,∴∠BAD=90°,所以菱形AEOF是正方形…………12分
23.解:(1)∵點(diǎn)A到x軸的距離是4
∴點(diǎn)A的縱坐標(biāo)是 ……………2分
把 代入 得:
∴ 點(diǎn)A的坐標(biāo)是 或 ……………4分
(2)由(1)可得: …………5分
當(dāng) 時,
∴點(diǎn)B的坐標(biāo)是 …………6分
設(shè)直線AB的解析式是 ……………7分
把A 、B 代入 得:
解得: ∴ 直線AB的解析式是 …………9分
把A 、B 代入 得:
解得: ∴ 直線AB的解析式是 …………12分
綜上所述:直線AB的解析式 是 或
評分細(xì)則:若只寫對一種情況,本小題給6分。
24.解:(1)①∵∠A=60°
∴∠ABC+∠ACB=120°…………1分
∵⊙O是△ABC的內(nèi)切圓
∴ BD平分∠ABC,CE平分∠ACB
∴∠DBC+∠ECB=60°…………2分
∴∠BOC=120°…………3分
②BC= BE+CD…………4分
解法1:作∠BOC的平分線OF交BC于點(diǎn)F,
∵∠BOC=120°
∴∠BOE=60°,∠BOF=60°
在△BOE與 △BOF中
∴ △BOE≌△BOF(ASA)
∴ BE=BF …………6分
同理可證:CD=CF …………8分
∴ BC= BE+CD
解法2:在BC上截取BF=BE,
可證 △BOE≌△BOF(SAS)…………5分
∴∠BOE=∠BOF
∵∠BOC=120° ∴∠BOE=∠COD =∠COF=60°
可證:△COD≌△COF(ASA)…………7分
∴ CD=CF …………8分
∴ BC= BE+CD
(2)如圖,連接AO并延長,交BC于點(diǎn)N,交ED于點(diǎn)M
∵⊙O 是△ABC的內(nèi)切圓 ∴ AO是∠BAC的平分線,
又 AB=AC, ∴ AN⊥BC
∵AB=AC=10,sin∠ABC= ∴ AN=8,BN=6 …………9分
由切線長定理得:BN=BE=6,AE=AD=4,
∵點(diǎn)D、E是⊙O的切點(diǎn),連接OE,∠AEO=∠ANB,∠BAN=∠BAN,
∴△AOE∽△ABN ∴ , 即
解得 …………10分
∴
∵ ,∠BAC=∠BAC
∴△AED∽△ABC
∴ , ………12分
以D、E、F、G為頂點(diǎn)的四邊形是矩形
∴∠DEF=90°
∴ 是⊙O 的直徑…………13分
∴
∴平移的距離是 …………14分
25.解:(1)解法1:令 得
∴ ………1分
∴ ………2分
無論 取何值,
∴ 拋物線與 軸必定有公共點(diǎn) …………3分
解法2:∵
∴ 拋物線的頂點(diǎn)坐標(biāo)是 , …………1分
無論 取何值, ≤0
∴ 拋物線的頂點(diǎn)坐標(biāo)在第四象限或 軸正半軸上…………2分
∵ 拋物線的開口向上
∴ 拋物線與 軸必定有公共點(diǎn) …………3分
解法3:令 即
根據(jù)公式法得: …………1分
∴ , …………2分
當(dāng) 時, , 當(dāng) 時, ,
∵ 拋物線的開口向上
∴ 無論 取何值,拋物線與 軸必定有公共點(diǎn) …………3分
(2)∵ ∴拋物線的對稱軸是 …………4分
當(dāng)點(diǎn)P在對稱軸的左側(cè)時, 隨 的增大而減小,
∵y1 y2 ∴ …………5分
當(dāng)點(diǎn)P在對稱軸的右側(cè)時, 隨 的增大而增大,
Q(-2,y2)關(guān)于對稱軸的對稱點(diǎn)是(3,y2)…………6分
∵y1 y2 ∴ …………7分
綜上所述: 或
(3)解法1:由(1)中解法3可得: ,
∵ ∴ ,解得 或
∴ …………9分
∴ 、 ,
∴ 直線BC的解析式是 …………10分
設(shè)點(diǎn)A到直線BC的距離是 ,點(diǎn)D到直線BC的距離是 ,
△ACE的面積S1 ,△DCE的面積S2
∴ , ……………11分
∴ 求 的最值轉(zhuǎn)化為求 的最值
設(shè)過點(diǎn)D與直線BC平行的直線解析式為
當(dāng)點(diǎn)D在直線BC下方的拋物線上運(yùn)動時, 無最小值,僅當(dāng)直線 與拋物線 只有一個公共點(diǎn)時, 有最大值……………12分
即方程組 有兩個相等的實(shí)數(shù)根
∴ , ,
∴ ,此時 ………13分
∴ 沒有最小值; 有最大值是 …………14分
解法2:∵點(diǎn) 在點(diǎn) 的左側(cè),與y軸負(fù)半軸交于點(diǎn)C, ∴ ,
∵ ∴ ,又
解得: , ,∴ …………9分
可得: 、 ,
∴直線BC的解析式是 …………10分
設(shè)點(diǎn)C到直線AD的距離是
△ACE的面積S1 ,△DCE的面積S2
∴ ……………11分
分別過點(diǎn)A、D作y軸的平行線交BC于點(diǎn)N、點(diǎn)M
∵AN//DM ∴ △DME∽△ANE, ∴
∴ , ……………12分
∴ ……………13分
∵ 當(dāng) 時, 沒有最小值, 有最大值是 ……………14分
解法3:∵ ∴
又∵ 拋物線的對稱軸是 ,即點(diǎn) 、 到對稱軸的距離都是
∴ 、 (以下同解法1或解法2)
本文來自:逍遙右腦記憶 http://m.yy-art.cn/chusan/1209662.html
相關(guān)閱讀:2018年濱州市中考數(shù)學(xué)一模試卷(有答案和解釋)