第三章指數(shù)函數(shù)和對(duì)數(shù)函數(shù)測(cè)試題(北師大版帶答案)

編輯: 逍遙路 關(guān)鍵詞: 高一 來源: 高中學(xué)習(xí)網(wǎng)


第三章《指數(shù)函數(shù)和對(duì)數(shù)函數(shù)》章末檢測(cè)
(時(shí)間90分鐘,滿分120分)
一、(本大題共10個(gè)小題,每小題5分,共50分)
1.化簡(jiǎn)[3-52] 的結(jié)果為(  )
A.5           B.5
C.-5 D.-5
解析:[3-52] =(352) =5 × =5 =5.
答案:B
2.若log513•log36•log6x=2,則x等于(  )
A.9 B.19
C.25 D.125
解析:由換底公式,得lg 13lg 5•lg 6lg 3•lg xlg 6=2,
∴-lg xlg 5=2.
∴l(xiāng)g x=-2lg 5=lg 125.∴x=125.
答案:D
3.(2015•江西高考)若f(x)= ,則f(x)的定義域?yàn)?  )
A.(-12,0) B.(-12,0]
C.(-12,+∞) D.(0,+∞)
解析:f(x)要有意義,需log (2x+1)>0,
即0<2x+1<1,解得-12<x<0.
答案:A
4.函數(shù)y=(a2-1)x在(-∞,+∞)上是減函數(shù),則a的取值范圍是(  )
A.a(chǎn)>1 B.a(chǎn)>2
C.a(chǎn)>2 D .1<a<2
解析:由0<a2-1<1得1<a2<2,
∴1<a<2.
答案:D
5.函數(shù)y=ax-1的定義域是(-∞,0],則a的取值范圍是(  )
A.a(chǎn)>0 B.a(chǎn)>1
C.0<a<1 D.a(chǎn)≠1
解析:由ax-1≥0得ax≥1,又知此函數(shù)的定義域?yàn)?-∞,0],即當(dāng)x≤0時(shí),ax≥1恒成立,∴0<a<1.
答案:C
6.函數(shù)y=x12xx的圖像的大致 形狀是(  )

解析:原函數(shù)式化為y=12x,x>0,-12x,x<0.
答案:D
7.函數(shù)y=3x-1-2,   x≤1,13x-1-2, x>1的值域是(  )
A.(-2,-1) B.(-2,+∞)
C.(-∞,-1] D.(-2,-1]
解析:當(dāng)x≤1時(shí),0<3x-1≤31-1=1,
∴-2<3x-1-2≤-1.
當(dāng)x>1時(shí),(13)x<(13)1,∴0<(13)x-1<(13)0=1,
則-2< (13)x-1-2 <1-2=-1.
答案:D
8.某工廠6年來生產(chǎn)甲種產(chǎn)品的情況是:前3年年產(chǎn)量的增大速度越來越快,后3年年產(chǎn)量保持不變,則該廠6年來生產(chǎn)甲種產(chǎn)品的總產(chǎn)量C與時(shí)間t(年)的函數(shù)關(guān)系圖像為
(  )

解析:由題意知前3年年產(chǎn)量增大速度越來越快, 可知在單位時(shí)間內(nèi),C的值增大的很快,從而可判定結(jié)果.
答案:A
9.設(shè)函數(shù)f(x)=log2x-1, x≥2,12x-1, x<2,若f(x0)>1,則x0的取值范圍是(  )
A.(-∞,0)∪(2,+∞) B.(0,2)
C.(-∞,-1)∪(3,+∞) D.(-1,3)
解析:當(dāng)x0≥2時(shí),∵f(x0)>1,
∴l(xiāng)og2(x0-1)>1,即x0>3;當(dāng) x0<2時(shí),由f(x0)>1得(12)x0-1>1,(12)x0>(12)-1,
∴x0<-1.
∴x0∈(-∞,-1)∪(3,+∞).
答案:C
10.函數(shù)f(x)=loga(bx)的圖像如圖,其中a,b為常數(shù).下列結(jié)論正確的是 (  )
A.0<a<1,b>1
B.a(chǎn)>1,0<b<1
C.a(chǎn)>1,b>1
D.0<a<1,0<b<1
解析:由于函數(shù)單調(diào)遞增,∴a>1,
又f(1)>0,即logab>0=loga1,∴b>1.
答案:C
二、題(本大題共4小題,每小題5分,共20分)
11.若函數(shù)y=13x x∈[-1,0],3x x∈0,1],則f(log3 )=________.
解析:∵-1=log3 <log3 <log31=0,
∴f(log3 )=(13)log3 =3-log3 =3log32=2.
答案:2
12.化簡(jiǎn): • =________.
解析:原式= •
= •
=a •a =a.
答案:a
13.若函數(shù)y=2x+1,y=b,y=-2x-1三圖像無公共點(diǎn),結(jié)合圖像求b的取值范圍為________.
解析:如圖.

當(dāng)-1≤b≤1時(shí),此三函數(shù)的圖像無公共點(diǎn).
答案:[-1,1]
14.已知f(x)=log3x的值域是[-1,1],那么它的反函數(shù)的值域?yàn)開_______.
解析:∵-1≤log3x≤1,
∴l(xiāng)og313≤log3x≤log33,∴13≤x ≤3.
∴f(x)=log3x的定義域是[13,3],
∴f(x)=log3x的反函數(shù)的值域是[13,3].
答案:[13,3]
三、解答題(本大題共4個(gè)小題,共50分)
15.(12分)設(shè)函數(shù)y=2x+1-x-1.
(1)討論y=f(x)的單調(diào)性, 作出其圖像;
(2)求f(x)≥22的解集.
解:(1)y=22,  x≥1,22x, -1≤x<1,2-2, x<-1.
當(dāng)x≥1或x<-1時(shí),y=f(x)是常數(shù)函數(shù)不具有單調(diào)性,
當(dāng)-1≤x<1時(shí),y=4x單調(diào)遞增,
故y=f(x)的單調(diào)遞增區(qū)間為[-1,1),其圖像如圖.

(2)當(dāng) x≥1時(shí),y=4≥22成立,
當(dāng)-1≤x<1時(shí),由y=22x≥22=2×2 =2 ,
得2x≥32,x≥34,∴34≤x<1,
當(dāng)x<-1時(shí),y=2-2=14<22不成立,
綜上,f(x)≥22的解集為[34,+∞).
16.(12分)設(shè)a>1,若對(duì)于任意的x∈[a,2a ],都有y∈[a,a2]滿足方程logax+logay=3,求a的取值范圍.
解:∵logax+logay=3,∴l(xiāng)ogaxy=3.
∴xy=a3.∴y=a3x.
∴函數(shù)y=a3x(a>1)為減函數(shù),
又當(dāng)x=a時(shí),y=a2,當(dāng)x=2a時(shí),y=a32a=a22 ,
∴a22,a2⊆[a,a2].∴a22≥a.
又a>1,∴a≥2.∴a的取值范圍為a≥2.
17.(12分)若-3≤log12x≤-12,求f(x)=(log2x2)•(log2x4)的最大值和最小 值.
解:f(x)=(log2x-1)(log2x-2)
=(log2x)2-3log2x+2=(log2x-32)2-14.
又∵-3≤log x≤-12,∴12≤log2x≤3.
∴當(dāng)log2x=32時(shí),f(x)in=f(22)=-14;
當(dāng)log2x=3時(shí),f(x)ax=f(8)=2.
18.(14分)已知函數(shù)f(x)=2x-12x+1,
(1)證明函數(shù)f(x)是R上的增函數(shù);
(2)求函數(shù)f(x)的值域;
(3)令g(x)=xfx,判定函數(shù)g(x)的奇偶性,并證明.
解:(1)證明:設(shè)x1,x2是R內(nèi)任意兩個(gè)值,且x1<x2,則x2-x1>0,y2-y1=f(x2)-f(x1)=2x2-12x2+1-2x1-12x1+1 =2•2x2-2•2x12x1+12x2+1=22x2-2x12x1+12x2+1,
當(dāng)x1<x2時(shí),2x1<2x2,∴2x2-2x1>0.
又2x1+1>0,2x2+1>0,∴y2-y1>0,
∴f(x)是R上的增函數(shù);
(2)f(x)=2x+1-22x+1=1-22x+1,
∵2x+1>1,∴0<22x+1<2,
即-2<-22x+1<0,∴-1<1-22x+1<1.
∴f(x)的值域?yàn)?-1,1);
(3)由題意知g(x)=xfx=2x+12x-1•x,
易知函數(shù)g(x)的定義域?yàn)?-∞,0)∪(0,+∞),
g(-x)=(-x)•2-x+12-x-1=(-x)•1+2x1-2x=x•2x+12x-1=g(x),
∴函數(shù)g(x)為偶函數(shù). 文


本文來自:逍遙右腦記憶 http://m.yy-art.cn/gaoyi/504817.html

相關(guān)閱讀:高一數(shù)學(xué)《函數(shù)與方程》練習(xí)題及答案(新人教版)