教學(xué)媒體多媒體
教
學(xué)
目
標(biāo)知識(shí)
技能1.通過(guò)觀察實(shí)驗(yàn),使學(xué)生理解圓的對(duì)稱性.
2.掌握垂徑定理及其推論,理解其證明,并會(huì)用它解決有關(guān)的證明與計(jì)算問(wèn)題.
過(guò)程
方法1.利用操作幾何的方法,理解圓是軸對(duì)稱圖形,過(guò)圓心的直線都是它的對(duì)稱軸.
2.經(jīng)歷探索垂徑定理及其推論的過(guò)程,進(jìn)一步和理解研究幾何圖形的各種方法.
情感
態(tài)度激發(fā)學(xué)生觀察、探究、發(fā)現(xiàn)數(shù)學(xué)問(wèn)題的興趣和欲望.
教學(xué)重點(diǎn)垂徑定理及其運(yùn)用.
教學(xué)難點(diǎn)發(fā)現(xiàn)并證明垂徑定理
教學(xué)過(guò)程設(shè)計(jì)
教學(xué)程序及教學(xué)內(nèi)容師生行為設(shè)計(jì)意圖
一、導(dǎo)語(yǔ):直徑是圓中特殊的弦,研究直徑是研究圓的重要突破口,這節(jié)課我們就從對(duì)直徑的研究開始來(lái)研究圓的性質(zhì).
二、探究新知
(一)圓的對(duì)稱性
沿著圓的任意一條直徑所在直線對(duì)折,重復(fù)做幾次,看看你能發(fā)現(xiàn)什么結(jié)論?
得到:把圓沿著它的任意一條直徑所在直線對(duì)折,直徑兩旁的兩個(gè)半圓就會(huì)重合在一起,因此,圓是軸對(duì)稱圖形,任何一條直徑所在的直線都是圓的對(duì)稱軸.
(二)、垂徑定理
完成課本思考
分析:1.如何說(shuō)明圖24.1-7是軸對(duì)稱圖形?
2.你能用不同方法說(shuō)明圖中的線段相等,弧相等嗎?
?垂徑定理:垂直于弦的直徑平分弦,并且平分弦所對(duì)的兩條弧.
即:直徑CD垂直于弦AB則CD平分弦AB,并且平分弦AB所對(duì)的兩條。
推理驗(yàn)證:可以連結(jié)OA、OB,證其與AE、BE構(gòu)成的兩個(gè)全等三角形,進(jìn)一步得到不同的等量關(guān)系.
分析:垂徑定理是由哪幾個(gè)已知條件得到哪幾條結(jié)論?
即一條直線若滿足過(guò)圓心、垂直于弦、則可以推出平分弦、平分弦所對(duì)的優(yōu)弧,平分弦所對(duì)的劣弧.
?垂徑定理推論
平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧.
思考:1.這條推論是由哪幾個(gè)已知條件得到哪幾條結(jié)論?
2.為什么要求“弦不是直徑”?否則會(huì)出現(xiàn)什么情況?
?垂徑定理的進(jìn)一步推廣
思考:類似推論的結(jié)論還有嗎?若有,有幾個(gè)?分別用語(yǔ)言敘述出來(lái).
歸納:只要已知一條直線滿足“垂直于弦、過(guò)圓心、平分弦、平分弦所對(duì)的優(yōu)弧,平分弦所對(duì)的劣弧.”中的兩個(gè)條件,就可以得到另外三個(gè)結(jié)論.
(三)、垂徑定理、推論的應(yīng)用
完成課本趙州橋問(wèn)題
分析:1.根據(jù)橋的實(shí)物圖畫出的幾何圖形應(yīng)是怎樣的?
2.結(jié)合所畫圖形思考:圓的半徑r、弦心距d、弦長(zhǎng)a,弓形高h(yuǎn)有怎樣的數(shù)量關(guān)系?
3.在圓中解決有關(guān)弦的問(wèn)題時(shí),常常需要作垂直于弦的直徑,作為輔助線,這樣就可以把垂徑定理和勾股定理結(jié)合起來(lái),得到圓的半徑r、弦心距d、弦長(zhǎng)a的一半之間的關(guān)系式:
三、課堂訓(xùn)練
完成課本88頁(yè)練習(xí)
補(bǔ)充:
1.如圖,一條公路的轉(zhuǎn)彎處是一段圓弧,點(diǎn)O是圓心,其中CD=600m,E為圓O上一點(diǎn),OE⊥CD,垂足為F,EF=90m,求這段彎路的半徑.
2.有一石拱橋的橋拱是圓弧形,如圖所示,正常水位下水面寬AB=60m,水面到拱頂距離CD=18m,當(dāng)洪水泛濫時(shí),水面寬MN=32m時(shí)是否需要采取緊急措施?請(qǐng)說(shuō)明理由.(當(dāng)水面距拱頂3米以內(nèi)時(shí)需要采取緊急措施)
四、小結(jié)歸納
1. 垂徑定理和推論及它們的應(yīng)用
2. 垂徑定理和勾股定理相結(jié)合,將圓的問(wèn)題轉(zhuǎn)化為直角三角形問(wèn)題.
3.圓中常作輔助線:半徑、過(guò)圓心的弦的垂線段
五、作業(yè)設(shè)計(jì)
作業(yè):課本94頁(yè) 1,95頁(yè) 9,12
補(bǔ)充:已知:在半徑為5?的⊙O中,兩條平行弦AB,CD分別長(zhǎng)8?,6?.求兩條平行弦間的距離.教師從直徑引出課題,引起學(xué)生思考
學(xué)生用紙剪一個(gè)圓,按教師要求操作,觀察,思考,交流,嘗試發(fā)現(xiàn)結(jié)論.
學(xué)生觀察圖形,結(jié)合圓的對(duì)稱性和相關(guān)知識(shí)進(jìn)行思考,嘗試得出垂徑定理,并從不同角度加以解釋.再進(jìn)行嚴(yán)格的幾何證明.
師生分析,進(jìn)一步理解定理,析出定理的題設(shè)和結(jié)論.
教師引導(dǎo)學(xué)生類比定理獨(dú)立用類似的方法進(jìn)行探究,得到推論
學(xué)生根據(jù)問(wèn)題進(jìn)行思考,更好的理解定理和推論,并弄明白它們的區(qū)別與聯(lián)系
學(xué)生審題,嘗試自己畫圖,理清題中的數(shù)量關(guān)系,并思考解決方法,由本節(jié)課知識(shí)想到作輔助線辦法,
教師組織學(xué)生進(jìn)行練習(xí),教師巡回檢查,集體交流評(píng)價(jià),教師指導(dǎo)學(xué)生寫出解答過(guò)程,方法,規(guī)律.
引導(dǎo)學(xué)生分析:要求當(dāng)洪水到來(lái)時(shí),水面寬MN=32m是否需要采取緊急措施,只要求出DE的長(zhǎng),因此只要求半徑R,然后運(yùn)用幾何代數(shù)解求R.
讓學(xué)生嘗試歸納,,發(fā)言,體會(huì),反思,教師點(diǎn)評(píng)匯總
通過(guò)學(xué)生親自動(dòng)手操作發(fā)現(xiàn)圓的對(duì)稱性,為后續(xù)探究打下基礎(chǔ)
通過(guò)該問(wèn)題引起學(xué)生思考,進(jìn)行探究,發(fā)現(xiàn)垂徑定理,初步感知培養(yǎng)學(xué)生的分析能力,解題能力.
為繼續(xù)探究其推論奠定基礎(chǔ)
培養(yǎng)學(xué)生解決問(wèn)題的意識(shí)和能力
全面的理解和掌握垂徑定理和它的推論,并進(jìn)行推廣,得到其他幾個(gè)定理,完整的把握所學(xué)知識(shí).
體會(huì)轉(zhuǎn)化思想,化未知為已知,從而解決本題,同時(shí)把握一類題型的解題方法,作輔助線方法.
運(yùn)用所學(xué)知識(shí)進(jìn)行應(yīng)用,鞏固知識(shí),形成做題技巧
讓學(xué)生通過(guò)練習(xí)進(jìn)一步理解,培養(yǎng)學(xué)生的應(yīng)用意識(shí)和能力
歸納提升,加強(qiáng)學(xué)習(xí)反思,幫助學(xué)生養(yǎng)成系統(tǒng)整理知識(shí)的習(xí)慣
鞏固深化提高
板 書 設(shè) 計(jì)
課題
垂徑定理垂徑定理的進(jìn)一步推廣
趙州橋問(wèn)題歸納
本文來(lái)自:逍遙右腦記憶 http://m.yy-art.cn/chusan/58789.html
相關(guān)閱讀:初三數(shù)學(xué)第24章圓導(dǎo)學(xué)案