數(shù)學(xué)對稱問題

編輯: 逍遙路 關(guān)鍵詞: 高中數(shù)學(xué) 來源: 高中學(xué)習(xí)網(wǎng)

  對稱問題是的重要內(nèi)容之一,在中常出現(xiàn)一些構(gòu)思新穎解法靈活的對稱問題,為使對稱問題的系統(tǒng)化,本文特作以下歸納。
  一、點關(guān)于已知點或已知直線對稱點問題
  1、設(shè)點P(x,y)關(guān)于點(a,b)對稱點為P′(x′,y′),
  x′=2a-x
  由中點坐標公式可得:y′=2b-y
  2、點P(x,y)關(guān)于直線L:Ax+By+C=O的對稱點為
  x′=x-(Ax+By+C)
  P′(x′,y′)則
  y′=y-(AX+BY+C)
  事實上:∵PP′⊥L及PP′的中點在直線L上,可得:Ax′+By′=-Ax-By-2C
  解此方程組可得結(jié)論。
 。-)=-1(B≠0)
  特別地,點P(x,y)關(guān)于
  1、x軸和y軸的對稱點分別為(x,-y)和(-x,y)
  2、直線x=a和y=a的對標點分別為(2a-x,y)和(x,2a-y)
  3、直線y=x和y=-x的對稱點分別為(y,x)和(-y,-x)
  例1光線從A(3 高一,4)發(fā)出后經(jīng)過直線x-2y=0反射,再經(jīng)過y軸反射,反射光線經(jīng)過點B(1,5),求射入y軸后的反射線所在的直線方程。
  解:如圖,由公式可求得A關(guān)于直線x-2y=0的對稱點
  A′(5,0),B關(guān)于y軸對稱點B′為(-1,5),直線A′B′的方程為5x+6y-25=0
 。郈(0,)
 。嘀本BC的方程為:5x-6y+25=0


本文來自:逍遙右腦記憶 http://m.yy-art.cn/gaozhong/43441.html

相關(guān)閱讀:幾何的三大問題