遼寧省高級(jí)中學(xué)高一數(shù)學(xué)暑假作業(yè)試題

編輯: 逍遙路 關(guān)鍵詞: 高一 來源: 高中學(xué)習(xí)網(wǎng)

遼寧省高級(jí)中學(xué)高一數(shù)學(xué)暑假作業(yè)試題

數(shù)學(xué)網(wǎng)為大家整理了高級(jí)中學(xué)高一數(shù)學(xué)暑假作業(yè)試題,希望對(duì)大家有所幫助和練習(xí)。并祝各位同學(xué)在暑期中快樂!!!。

一、選擇題(本大題共12小題,在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的)

1.直線3ax-y-1=0與直線(a-)x+y+1=0垂直,則a的值是(  )

A.-1或  B.1或C.-或-1 D.-或1

2.直線l1:ax-y+b=0,l2:bx-y+a=0(a≠0,b≠0,a≠b)在同一坐標(biāo)系中的圖形大致是圖中的(  )

3.已知點(diǎn)A(-1,1)和圓C:(x-5)2+(y-7)2=4,一束光線從A經(jīng)x軸反射到圓C上的最短路程是(  )

A.6-2 B.8C.4 D.10

4.圓x2+y2=1與圓x2+y2=4的位置關(guān)系是(  )

A.相離 B.相切C.相交 D.內(nèi)含

5.已知圓C:(x-a)2+(y-2)2=4(a>0)及直線l:x-y+3=0,當(dāng)直線l被圓C截得的弦長(zhǎng)為2時(shí),a的值等于(  )

A. B.-1C.2- D.+1

6.與直線2x+3y-6=0關(guān)于點(diǎn)(1,-1)對(duì)稱的直線是(  )

A.3x-2y-6=0B.2x+3y+7=0C.3x-2y-12=0D.2x+3y+8=0

7.若直線y-2=k(x-1)與圓x2+y2=1相切,則切線方程為(  )

A.y-2=(1-x)B.y-2=(x-1)C.x=1或y-2=(1-x)D.x=1或y-2=(x-1)

8.圓x2+y2-2x=3與直線y=ax+1的公共點(diǎn)有(  )

A.0個(gè) B.1個(gè)C.2個(gè) D.隨a值變化而變化

9.過P(5,4)作圓C:x2+y2-2x-2y-3=0的切線,切點(diǎn)分別為A、B,四邊形PACB的面積是

A.5B.10C.15 D.20

10.若直線mx+2ny-4=0(m、nR,n≠m)始終平分圓x2+y2-4x-2y-4=0的周長(zhǎng),則mn的取值范圍是(  )

A.(0,1) B.(0,-1)C.(-∞,1) D.(-∞,-1)

11.已知直線l:y=x+m與曲線y=有兩個(gè)公共點(diǎn),則實(shí)數(shù)m的取值范圍是(  )

A.(-2,2) B.(-1,1)C.[1,) D.(-,)

12.過點(diǎn)P(-2,4)作圓O:(x-2)2+(y-1)2=25的切線l,直線m:ax-3y=0與直線l平行,則直線l與m的距離為(  )

A.4 B.2C. D.

二、填空題(本大題共4小題,請(qǐng)把答案填在題中橫線上)

13.過點(diǎn)A(1,-1),B(-1,1)且圓心在直線x+y-2=0上的圓的方程是________.

14.過點(diǎn)P(-2,0)作直線l交圓x2+y2=1于A、B兩點(diǎn),則|PA|·|PB|=________.

15.若垂直于直線2x+y=0,且與圓x2+y2=5相切的切線方程為ax+2y+c=0,則ac的值為________.

16.若直線3x+4y+m=0與圓x2+y2-2x+4y+4=0沒有公共點(diǎn),則實(shí)數(shù)m的取值范圍是__________.

三、解答題(本大題共6小題,解答時(shí)應(yīng)寫出必要的文字說明、證明過程或演算步驟)

17.三角形ABC的邊AC,AB的高所在直線方程分別為2x-3y+1=0,x+y=0,頂點(diǎn)A(1,2),求BC邊所在的直線方程.

18.一束光線l自A(-3,3)發(fā)出,射到x軸上,被x軸反射后與圓C:x2+y2-4x-4y+7=0有公共點(diǎn).

(1)求反射光線通過圓心C時(shí),光線l所在直線的方程;

(2)求在x軸上,反射點(diǎn)M的橫坐標(biāo)的取值范圍.

19.已知圓x2+y2-2x-4y+m=0.

(1)此方程表示圓,求m的取值范圍;

(2)若(1)中的圓與直線x+2y-4=0相交于M、N兩點(diǎn),且OMON(O為坐標(biāo)原點(diǎn)),求m的值;

(3)在(2)的條件下,求以MN為直徑的圓的方程.

20. 已知圓O:x2+y2=1和定點(diǎn)A(2,1),由圓O外一點(diǎn)P(a,b)向圓O引切線PQ,切點(diǎn)為Q,|PQ|=|PA|成立,如圖.

(1)求a、b間關(guān)系;

(2)求|PQ|的最小值;

(3)以P為圓心作圓,使它與圓O有公共點(diǎn),試在其中求出半徑最小的圓的方程.

21.有一圓與直線l:4x-3y+6=0相切于點(diǎn)A(3,6),且經(jīng)過點(diǎn)B(5,2),求此圓的方程.

22.如圖在平面直角坐標(biāo)系xOy中,已知圓C1:(x+3)2+(y-1)2=4和圓C2:(x-4)2+(y-5)2=4.

(1)若直線l過點(diǎn)A(4,0),且被圓C1截得的弦長(zhǎng)為2,求直線l的方程;

(2)設(shè)P為平面上的點(diǎn),滿足:存在過點(diǎn)P的無窮多對(duì)互相垂直的直線l1和l2,它們分別與圓C1和C2相交,且直線l1被圓C1截得的弦長(zhǎng)與直線l2被C2截得的弦長(zhǎng)相等.試求所有滿足條件的點(diǎn)P的坐標(biāo).

參考答案(七)

三、17.解:AC邊上的高線2x-3y+1=0,所以kAC=-.所以AC的方程為y-2=-(x-1),

即3x+2y-7=0,同理可求直線AB的方程為x-y+1=0.

下面求直線BC的方程,

由得頂點(diǎn)C(7,-7),由得頂點(diǎn)B (-2,-1).

所以kBC=-,直線BC:y+1=-(x+2),即2x+3y+7=0.

18.解:圓C的方程可化為(x-2)2+(y-2)2=1.

19.解:(1)方程x2+y2-2x-4y+m=0,可化為(x-1)2+(y-2)2=5-m,

此方程表示圓,5-m>0,即m<5.

(2)

消去x得(4-2y)2+y2-2×(4-2y)-4y+m=0,化簡(jiǎn)得5y2-16y+m+8=0.

設(shè)M(x1,y1),N(x2,y2),則

由OMON得y1y2+x1x2=0即y1y2+ (4-2y1)(4-2y2)=0,16-8(y1+y2)+5y1y2=0.將兩式代入上式得16-8×+5×=0,解之得m=.

所求圓的半徑為.所求圓的方程為2+2=.

20. 解:(1)連接OQ、OP,則OQP為直角三角形,

又|PQ|=|PA|,所以|OP|2=|OQ|2+|PQ|2=1+|PA|2,

所以a2+b2=1+(a-2)2+(b-1)2,故2a+b-3=0.

(2)由(1)知,P在直線l:2x+y-3=0上,

所以|PQ|min=|PA|min,為A到直線l的距離,

所以|PQ|min==.

(或由|PQ|2=|OP|2-1=a2+b2-1=a2+9-12a+4a2-1=5a2-12a+8=5(a-1.2)2+0.8,得|PQ|min=.)

所以所求圓的方程為(x-)2+(y-)2=(-1)2.

21.解:設(shè)圓的方程為(x-a)2+(y-b)2=r2,

則圓心為C(a,b),由|CA|=|CB|,CAl,得

解得所以所求圓的方程為(x-5)2+(y-)2=.

(2)設(shè)點(diǎn)P(a,b)滿足條件,不妨設(shè)直線l1的方程為y-b=k(x-a),k≠0,則直線l2的方程為y-b=-(x-a).因?yàn)閳AC1和C2的半徑相等,且圓C1被直線l1截得的弦長(zhǎng)與圓C2被直線l2截得的弦長(zhǎng)相等,所以圓C1的圓心到直線l1的距離和圓C2的圓心到直線l2的距離相等,即

=,

整理得|1+3k+ak-b|=|5k+4-a-bk|,從而1+3k+ak-b=5k+4-a-bk或1+3k+ak-b=-5k-4+a+bk,即(a+b-2)k=b-a+3或(a-b+8)k=a+b-5,因?yàn)閗的取值有無窮多個(gè),所以······

以上就是高級(jí)中學(xué)高一數(shù)學(xué)暑假作業(yè)試題,更多精彩請(qǐng)進(jìn)入高中頻道。


本文來自:逍遙右腦記憶 http://m.yy-art.cn/gaoyi/910145.html

相關(guān)閱讀:高一數(shù)學(xué)下冊(cè)必修一試卷