古典概型及隨機數(shù)的產(chǎn)生

編輯: 逍遙路 關(guān)鍵詞: 高二 來源: 高中學習網(wǎng)



3.2.2古典概型及隨機數(shù)的產(chǎn)生

一、目標:
1、知識與技能:(1)正確理解古典概型的兩大特點:1)試驗中所有可能出現(xiàn)的基本事只有有限個;2)每個基本事出現(xiàn)的可能性相等;
(2)掌握古典概型的概率計算公式:P(A)=
(3)了解隨機數(shù)的概念;
(4)利用計算機產(chǎn)生隨機數(shù),并能直接統(tǒng)計出頻數(shù)與頻率。
二、重點與難點:1、正確理解掌握古典概型及其概率公式;
2、正確理解隨機數(shù)的概念,并能應(yīng)用計算機產(chǎn)生隨機數(shù).
三、學法與用具:1、與學生共同探討,應(yīng)用數(shù)學解決現(xiàn)實問題;2、通過模擬試驗,感知應(yīng)用數(shù)字解決問題的方法,自覺養(yǎng)成動手、動腦的良好習慣.
四、教學過程:
1、創(chuàng)設(shè)情境:(1)擲一枚質(zhì)地均勻的硬幣,結(jié)果只有2個,即“正面朝上”或“反面朝上”,它們都是隨機事。
(2)一個盒子中有10個完全相同的球,分別標以號碼1,2,3,…,10,從中任取一球,只有10種不同的結(jié)果,即標號為1,2,3…,10。
師生共同探討:根據(jù)上述情況,你能發(fā)現(xiàn)它們有什么共同特點?
2、基本概念:
(1)基本事、古典概率模型、隨機數(shù)、偽隨機數(shù)的概念見本P121~126;
(2)古典概型的概率計算公式:P(A)= .
3、例題分析:
例1 擲一顆骰子,觀察擲出的點數(shù),求擲得奇數(shù)點的概率。
分析:擲骰子有6個基本事,具有有限性和等可能性,因此是古典概型。
解:這個試驗的基本事共有6個,即(出現(xiàn)1點)、(出現(xiàn)2點)……、(出現(xiàn)6點)
所以基本事數(shù)n=6,事A=(擲得奇數(shù)點)=(出現(xiàn)1點,出現(xiàn)3點,出現(xiàn)5點),
其包含的基本事數(shù)m=3
所以,P(A)= = = =0.5
例2 從含有兩正品a1,a2和一次品b1的三產(chǎn)品中,每次任取一,每次取出后不放回,連續(xù)取兩次,求取出的兩產(chǎn)品中恰有一次品的概率。
解:每次取出一個,取后不放回地連續(xù)取兩次,其一切可能的結(jié)果組成的基本事有6個,即(a1,a2)和,(a1,b2),(a2,a1),(a2,b1),(b1,a1),(b2,a2)。其中小括號內(nèi)左邊的字母表示第1次取出的產(chǎn)品,右邊的字母表示第2次取出的產(chǎn)用A表示“取出的兩種中,恰好有一次品”這一事,則A=[(a1,b1),(a2,b1),(b1,a1),(b1,a2)]
事A由4個基本事組成,因而,P(A)= = 。
例3 現(xiàn)有一批產(chǎn)品共有10,其中8為正品,2為次品:
(1)如果從中取出一,然后放回,再取一,求連續(xù)3次取出的都是正品的概率;
(2)如果從中一次取3,求3都是正品的概率.
分析:(1)為返回抽樣;(2)為不返回抽樣.
解:(1)有放回地抽取3次,按抽取順序(x,y,z)記錄結(jié)果,則x,y,z都有10種可能,所以試驗結(jié)果有10×10×10=103種;設(shè)事A為“連續(xù)3次都取正品”,則包含的基本事共有8×8×8=83種,因此,P(A)= =0.512.
(2)解法1:可以看作不放回抽樣3次,順序不同,基本事不同,按抽取順序記錄(x,y,z),則x有10種可能,y有9種可能,z有8種可能,所以試驗的所有結(jié)果為10×9×8=720種.設(shè)事B為“3都是正品”,則事B包含的基本事總數(shù)為8×7×6=336, 所以P(B)= ≈0.467.
解法2:可以看作不放回3次無順序抽樣,先按抽取順序(x,y,z)記錄結(jié)果,則x有10種可能,y有9種可能,z有8種可能,但(x,y,z),(x,z,y),(y,x,z),(y,z,x),(z,x,y),(z,y,x),是相同的,所以試驗的所有結(jié)果有10×9×8÷6=120,按同樣的方法,事B包含的基本事個數(shù)為8×7×6÷6=56,因此P(B)= ≈0.467.
例4 利用計算器產(chǎn)生10個1~100之間的取整數(shù)值的隨機數(shù)。
解:具體操作如下:
鍵入

反復操作10次即可得之
例5 某籃球愛好者,做投籃練習,假設(shè)其每次投籃命中的概率是40%,那么在連續(xù)三次投籃中,恰有兩次投中的概率是多少?
分析:其投籃的可能結(jié)果有有限個,但是每個結(jié)果的出現(xiàn)不是等可能的,所以不能用古典概型的概率公式計算,我們用計算機或計算器做模擬試驗可以模擬投籃命中的概率為40%。
解:我們通過設(shè)計模擬試驗的方法解決問題,利用計算機或計算器可以生產(chǎn)0到9之間的取整數(shù)值的隨機數(shù)。
我們用1,2,3,4表示投中,用5,6,7,8,9,0表示未投中,這樣可以體現(xiàn)投中的概率是40%。因為是投籃三次,所以每三個隨機數(shù)作為一組。
例如:產(chǎn)生20組隨機數(shù):
812,932,569,683,271,989,730,537,925,
907,113,966,191,431,257,393,027,556.
這就相當于做了20次試驗,在這組數(shù)中,如果恰有兩個數(shù)在1,2,3,4中,則表示恰有兩次投中,它們分別是812,932,271,191,393,即共有5個數(shù),我們得到了三次投籃中恰有兩次投中的概率近似為 =25%。
例6 你還知道哪些產(chǎn)生隨機數(shù)的函數(shù)?請列舉出。
解:(1)每次按SHIFT RNA# 鍵都會產(chǎn)生一個0~1之間的隨機數(shù),而且出現(xiàn)0~1內(nèi)任何一個數(shù)的可能性是相同的。
(2)還可以使用計算機軟產(chǎn)生隨機數(shù),如Scilab中產(chǎn)生隨機數(shù)的方法。Scilab中用rand()函數(shù)產(chǎn)生0~1之間的隨機數(shù),每周用一次rand()函數(shù),就產(chǎn)生一個隨機數(shù),如果要產(chǎn)生a~b之間的隨機數(shù),可以使用變換rand()*(b-a)+a得到.
4、堂小結(jié):本節(jié)主要研究了古典概型的概率求法,解題時要注意兩點:
(1)古典概型的使用條:試驗結(jié)果的有限性和所有結(jié)果的等可能性。
(2)古典概型的解題步驟;
①求出總的基本事數(shù);
②求出事A所包含的基本事數(shù),然后利用公式P(A)=
(3)隨機數(shù)量具有廣泛的應(yīng)用,可以幫助我們安排和模擬一些試驗,這樣可以代替我們自己做大量重復試驗,比如現(xiàn)在很多城市的重要考試采用產(chǎn)生隨機數(shù)的方法把考生分配到各個考場中。
5堂練習:
1.在40根纖維中,有12根的長度超過30mm,從中任取一根,取到長度超過30mm的纖維的概率是( )
A. B. C. D.以上都不對
2.盒中有10個鐵釘,其中8個是合格的,2個是不合格的,從中任取一個恰為合格鐵釘?shù)母怕适?br />A. B. C. D.
3.在大小相同的5個球中,2個是紅球,3個是白球,若從中任取2個,則所取的2個球中至少有一個紅球的概率是 。
4.拋擲2顆質(zhì)地均勻的骰子,求點數(shù)和為8的概率。
5.利用計算器生產(chǎn)10個1到20之間的取整數(shù)值的隨機數(shù)。
6.用0表示反面朝上,1表正面朝上,請用計算器做模擬擲硬幣試驗。
6、堂練習答案:
1.B[提示:在40根纖維中,有12根的長度超過30mm,即基本事總數(shù)為40,且它們是等可能發(fā)生的,所求事包含12個基本事,故所求事的概率為 ,因此選B.]
2.C[提示:(方法1)從盒中任取一個鐵釘包含基本事總數(shù)為10,其中抽到合格鐵訂(記為事A)包含8個基本事,所以,所求概率為P(A)= = .(方法2)本題還可以用對立事的概率公式求解,因為從盒中任取一個鐵釘,取到合格品(記為事A)與取到不合格品(記為事B)恰為對立事,因此,P(A)=1-P(B)=1- = .]
3. [提示;記大小相同的5個球分別為紅1,紅2,白1,白2,白3,則基本事為:(紅1,紅2),(紅1,白1),(紅1,白2)(紅1,白3),(紅2,白3),共10個,其中至少有一個紅球的事包括7個基本事,所以,所求事的概率為 .本題還可以利用“對立事的概率和為1”求解,對于求“至多”“至少”等事的概率頭問題,常采用間接法,即求其對立事的概率P(A),然后利用P(A)1-P(A)求解]。
4.解:在拋擲2顆骰子的試驗中,每顆骰子均可出現(xiàn)1點,2點,…,6點6種不同的結(jié)果,我們把兩顆骰子標上記號1,2以便區(qū)分,由于1號骰子的一個結(jié)果,因此同時擲兩顆骰子的結(jié)果共有6×6=36種,在上面的所有結(jié)果中,向上的點數(shù)之和為8的結(jié)果有(2,6),(3,5),(4,4),(5,3),(6,2)5種,所以,所求事的概率為 .
5.解:具體操作如下
鍵入

反復按 鍵10次即可得到。

6.解:具體操作如下:
鍵入

7、作業(yè):根據(jù)情況安排

8板書設(shè)計:
3.2.2古典概型及隨機數(shù)的產(chǎn)生
基本概念: 例3 例5

3.2.2古典概型及隨機數(shù)的產(chǎn)生

前預習學案
一、預習目標:
1、正確理解古典概型的兩大特點:1)試驗中所有可能出現(xiàn)的基本事只有有限個;2)每個基本事出現(xiàn)的可能性相等;
2、掌握古典概型的概率計算公式:P(A)=
3、了解隨機數(shù)的概念;
二、預習內(nèi)容:1、基本事
2、古典概率模型
3、隨機數(shù)
4、偽隨機數(shù)的概念
5、古典概型的概率計算公式:P(A)= .
三、提出疑惑
同學們,通過你的自主學習,你還有哪些疑惑,請把它填在下面的表格中
疑惑點疑惑內(nèi)容

內(nèi)探究學案
一、學習目標:(1)正確理解古典概型的兩大特點
(2)掌握古典概型的概率計算公式:P(A)=
(3)了解隨機數(shù)的概念
二、重點與難點:1、正確理解掌握古典概型及其概率公式;
2、正確理解隨機數(shù)的概念,并能應(yīng)用計算機產(chǎn)生隨機數(shù).
三、學習過程:
1、創(chuàng)設(shè)情境:(1)擲一枚質(zhì)地均勻的硬幣,結(jié)果只有2個,即“正面朝上”或“反面朝上”,它們都是隨機事。
(2)一個盒子中有10個完全相同的球,分別標以號碼1,2,3,…,10,從中任取一球,只有10種不同的結(jié)果,即標號為1,2,3…,10。
根據(jù)上述情況,你能發(fā)現(xiàn)它們有什么共同特點?


2、例題:
例1 擲一顆骰子,觀察擲出的點數(shù),求擲得奇數(shù)點的概率。
解:


例2 從含有兩正品a1,a2和一次品b1的三產(chǎn)品中,每次任取一,每次取出后不放回,連續(xù)取兩次,求取出的兩產(chǎn)品中恰有一次品的概率。
解:

例3 現(xiàn)有一批產(chǎn)品共有10,其中8為正品,2為次品:
(1)如果從中取出一,然后放回,再取一,求連續(xù)3次取出的都是正品的概率;
(2)如果從中一次取3,求3都是正品的概率.
解:


例4 利用計算器產(chǎn)生10個1~100之間的取整數(shù)值的隨機數(shù)。

例5 某籃球愛好者,做投籃練習,假設(shè)其每次投籃命中的概率是40%,那么在連續(xù)三次投籃中,恰有兩次投中的概率是多少?
解:


例6 你還知道哪些產(chǎn)生隨機數(shù)的函數(shù)?請列舉出。
解:

3、反思總結(jié)
(1)、數(shù)學知識:
(2)、數(shù)學思想方法:


4、當堂檢測:
一、選擇題
1.在40根纖維中,有12根的長度超過30mm,從中任取一根,取到長度超過30mm的纖維的概率是( )
A. B. C. D.以上都不對
2.盒中有10個鐵釘,其中8個是合格的,2個是不合格的,從中任取一個恰為合格鐵釘?shù)母怕适?br />A. B. C. D.
3將骰子拋2次,其中向上的數(shù)之和是5的概率是( )
A、 B、 C、 D、9
二、填空題
4在大小相同的5個球中,2個是紅球,3個是白球,若從中任取2個,則所取的2個球中至少有一個紅球的概率是 。
5.拋擲2顆質(zhì)地均勻的骰子,則點數(shù)和為8的概率為 。
三、解答題
6.用0表示反面朝上,1表正面朝上,請用計算器做模擬擲硬幣試驗。

答案:1.B[提示:在40根纖維中,有12根的長度超過30mm,即基本事總數(shù)為40,且它們是等可能發(fā)生的,所求事包含12個基本事,故所求事的概率為 ,因此選B.]
2.C[提示:(方法1)從盒中任取一個鐵釘包含基本事總數(shù)為10,其中抽到合格鐵訂(記為事A)包含8個基本事,所以,所求概率為P(A)= = .(方法2)本題還可以用對立事的概率公式求解,因為從盒中任取一個鐵釘,取到合格品(記為事A)與取到不合格品(記為事B)恰為對立事,因此,P(A)=1-P(B)=1- = .]
3A
4. [提示;記大小相同的5個球分別為紅1,紅2,白1,白2,白3,則基本事為:(紅1,紅2),(紅1,白1),(紅1,白2)(紅1,白3),(紅2,白3),共10個,其中至少有一個紅球的事包括7個基本事,所以,所求事的概率為 .本題還可以利用“對立事的概率和為1”求解,對于求“至多”“至少”等事的概率頭問題,常采用間接法,即求其對立事的概率P(A),然后利用P(A)1-P(A)求解]。
5.解:在拋擲2顆骰子的試驗中,每顆骰子均可出現(xiàn)1點,2點,…,6點6種不同的結(jié)果,我們把兩顆骰子標上記號1,2以便區(qū)分,由于1號骰子的一個結(jié)果,因此同時擲兩顆骰子的結(jié)果共有6×6=36種,在上面的所有結(jié)果中,向上的點數(shù)之和為8的結(jié)果有(2,6),(3,5),(4,4),(5,3),(6,2)5種,所以,所求事的概率為 .
6.解:具體操作如下:
鍵入


后練習與提高

一、選擇題
1、從長度為1,3,5,7,9五條線段中任取三條能構(gòu)成三角形的概率是( )
A、 B、 C、 D、

2、將8個參賽隊伍通過抽簽分成A、B兩組,每組4隊,其中甲、乙兩隊恰好不在同組的概率為( )
A、 B、 C、 D、

3、袋中有白球5只,黑球6只,連續(xù)取出3只球,則順序為“黑白黑”的概率為( )
A、 B、 C、 D、
二、填空題
4、接連三次擲一硬幣,正反面輪流出現(xiàn)的概率等于 ,

5、在100個產(chǎn)品中,有10個是次品,若從這100個產(chǎn)品中任取5個,其中恰有2個次品的概率等于 。
三、解答題
6在第1,3,5,8路公共汽車都要?康囊粋站(假定這個站只能?恳惠v汽車),有1位乘客等候第1路或第3路汽車、假定當時各路汽車首先到站的可能性相等,求首先到站正好是這位乘客所要乘的汽車的概率、

答案
一、選擇題
1、B 2、A 3、D
二、填空題
4、
5、
三解答題解:記“首先到站的汽車正好是這位乘客所要乘的汽車”為事A,則事A的概率P(A)=
答:首先到站正好是這位乘客所要乘的汽車的概率為




本文來自:逍遙右腦記憶 http://m.yy-art.cn/gaoer/46855.html

相關(guān)閱讀:幾何概型