古典概型及隨機(jī)數(shù)的產(chǎn)生

編輯: 逍遙路 關(guān)鍵詞: 高二 來(lái)源: 高中學(xué)習(xí)網(wǎng)



3.2.2古典概型及隨機(jī)數(shù)的產(chǎn)生

一、目標(biāo):
1、知識(shí)與技能:(1)正確理解古典概型的兩大特點(diǎn):1)試驗(yàn)中所有可能出現(xiàn)的基本事只有有限個(gè);2)每個(gè)基本事出現(xiàn)的可能性相等;
(2)掌握古典概型的概率計(jì)算公式:P(A)=
(3)了解隨機(jī)數(shù)的概念;
(4)利用計(jì)算機(jī)產(chǎn)生隨機(jī)數(shù),并能直接統(tǒng)計(jì)出頻數(shù)與頻率。
二、重點(diǎn)與難點(diǎn):1、正確理解掌握古典概型及其概率公式;
2、正確理解隨機(jī)數(shù)的概念,并能應(yīng)用計(jì)算機(jī)產(chǎn)生隨機(jī)數(shù).
三、學(xué)法與用具:1、與學(xué)生共同探討,應(yīng)用數(shù)學(xué)解決現(xiàn)實(shí)問(wèn)題;2、通過(guò)模擬試驗(yàn),感知應(yīng)用數(shù)字解決問(wèn)題的方法,自覺(jué)養(yǎng)成動(dòng)手、動(dòng)腦的良好習(xí)慣.
四、教學(xué)過(guò)程:
1、創(chuàng)設(shè)情境:(1)擲一枚質(zhì)地均勻的硬幣,結(jié)果只有2個(gè),即“正面朝上”或“反面朝上”,它們都是隨機(jī)事。
(2)一個(gè)盒子中有10個(gè)完全相同的球,分別標(biāo)以號(hào)碼1,2,3,…,10,從中任取一球,只有10種不同的結(jié)果,即標(biāo)號(hào)為1,2,3…,10。
師生共同探討:根據(jù)上述情況,你能發(fā)現(xiàn)它們有什么共同特點(diǎn)?
2、基本概念:
(1)基本事、古典概率模型、隨機(jī)數(shù)、偽隨機(jī)數(shù)的概念見(jiàn)本P121~126;
(2)古典概型的概率計(jì)算公式:P(A)= .
3、例題分析:
例1 擲一顆骰子,觀察擲出的點(diǎn)數(shù),求擲得奇數(shù)點(diǎn)的概率。
分析:擲骰子有6個(gè)基本事,具有有限性和等可能性,因此是古典概型。
解:這個(gè)試驗(yàn)的基本事共有6個(gè),即(出現(xiàn)1點(diǎn))、(出現(xiàn)2點(diǎn))……、(出現(xiàn)6點(diǎn))
所以基本事數(shù)n=6,事A=(擲得奇數(shù)點(diǎn))=(出現(xiàn)1點(diǎn),出現(xiàn)3點(diǎn),出現(xiàn)5點(diǎn)),
其包含的基本事數(shù)m=3
所以,P(A)= = = =0.5
例2 從含有兩正品a1,a2和一次品b1的三產(chǎn)品中,每次任取一,每次取出后不放回,連續(xù)取兩次,求取出的兩產(chǎn)品中恰有一次品的概率。
解:每次取出一個(gè),取后不放回地連續(xù)取兩次,其一切可能的結(jié)果組成的基本事有6個(gè),即(a1,a2)和,(a1,b2),(a2,a1),(a2,b1),(b1,a1),(b2,a2)。其中小括號(hào)內(nèi)左邊的字母表示第1次取出的產(chǎn)品,右邊的字母表示第2次取出的產(chǎn)用A表示“取出的兩種中,恰好有一次品”這一事,則A=[(a1,b1),(a2,b1),(b1,a1),(b1,a2)]
事A由4個(gè)基本事組成,因而,P(A)= = 。
例3 現(xiàn)有一批產(chǎn)品共有10,其中8為正品,2為次品:
(1)如果從中取出一,然后放回,再取一,求連續(xù)3次取出的都是正品的概率;
(2)如果從中一次取3,求3都是正品的概率.
分析:(1)為返回抽樣;(2)為不返回抽樣.
解:(1)有放回地抽取3次,按抽取順序(x,y,z)記錄結(jié)果,則x,y,z都有10種可能,所以試驗(yàn)結(jié)果有10×10×10=103種;設(shè)事A為“連續(xù)3次都取正品”,則包含的基本事共有8×8×8=83種,因此,P(A)= =0.512.
(2)解法1:可以看作不放回抽樣3次,順序不同,基本事不同,按抽取順序記錄(x,y,z),則x有10種可能,y有9種可能,z有8種可能,所以試驗(yàn)的所有結(jié)果為10×9×8=720種.設(shè)事B為“3都是正品”,則事B包含的基本事總數(shù)為8×7×6=336, 所以P(B)= ≈0.467.
解法2:可以看作不放回3次無(wú)順序抽樣,先按抽取順序(x,y,z)記錄結(jié)果,則x有10種可能,y有9種可能,z有8種可能,但(x,y,z),(x,z,y),(y,x,z),(y,z,x),(z,x,y),(z,y,x),是相同的,所以試驗(yàn)的所有結(jié)果有10×9×8÷6=120,按同樣的方法,事B包含的基本事個(gè)數(shù)為8×7×6÷6=56,因此P(B)= ≈0.467.
例4 利用計(jì)算器產(chǎn)生10個(gè)1~100之間的取整數(shù)值的隨機(jī)數(shù)。
解:具體操作如下:
鍵入

反復(fù)操作10次即可得之
例5 某籃球愛(ài)好者,做投籃練習(xí),假設(shè)其每次投籃命中的概率是40%,那么在連續(xù)三次投籃中,恰有兩次投中的概率是多少?
分析:其投籃的可能結(jié)果有有限個(gè),但是每個(gè)結(jié)果的出現(xiàn)不是等可能的,所以不能用古典概型的概率公式計(jì)算,我們用計(jì)算機(jī)或計(jì)算器做模擬試驗(yàn)可以模擬投籃命中的概率為40%。
解:我們通過(guò)設(shè)計(jì)模擬試驗(yàn)的方法解決問(wèn)題,利用計(jì)算機(jī)或計(jì)算器可以生產(chǎn)0到9之間的取整數(shù)值的隨機(jī)數(shù)。
我們用1,2,3,4表示投中,用5,6,7,8,9,0表示未投中,這樣可以體現(xiàn)投中的概率是40%。因?yàn)槭峭痘@三次,所以每三個(gè)隨機(jī)數(shù)作為一組。
例如:產(chǎn)生20組隨機(jī)數(shù):
812,932,569,683,271,989,730,537,925,
907,113,966,191,431,257,393,027,556.
這就相當(dāng)于做了20次試驗(yàn),在這組數(shù)中,如果恰有兩個(gè)數(shù)在1,2,3,4中,則表示恰有兩次投中,它們分別是812,932,271,191,393,即共有5個(gè)數(shù),我們得到了三次投籃中恰有兩次投中的概率近似為 =25%。
例6 你還知道哪些產(chǎn)生隨機(jī)數(shù)的函數(shù)?請(qǐng)列舉出。
解:(1)每次按SHIFT RNA# 鍵都會(huì)產(chǎn)生一個(gè)0~1之間的隨機(jī)數(shù),而且出現(xiàn)0~1內(nèi)任何一個(gè)數(shù)的可能性是相同的。
(2)還可以使用計(jì)算機(jī)軟產(chǎn)生隨機(jī)數(shù),如Scilab中產(chǎn)生隨機(jī)數(shù)的方法。Scilab中用rand()函數(shù)產(chǎn)生0~1之間的隨機(jī)數(shù),每周用一次rand()函數(shù),就產(chǎn)生一個(gè)隨機(jī)數(shù),如果要產(chǎn)生a~b之間的隨機(jī)數(shù),可以使用變換rand()*(b-a)+a得到.
4、堂小結(jié):本節(jié)主要研究了古典概型的概率求法,解題時(shí)要注意兩點(diǎn):
(1)古典概型的使用條:試驗(yàn)結(jié)果的有限性和所有結(jié)果的等可能性。
(2)古典概型的解題步驟;
①求出總的基本事數(shù);
②求出事A所包含的基本事數(shù),然后利用公式P(A)=
(3)隨機(jī)數(shù)量具有廣泛的應(yīng)用,可以幫助我們安排和模擬一些試驗(yàn),這樣可以代替我們自己做大量重復(fù)試驗(yàn),比如現(xiàn)在很多城市的重要考試采用產(chǎn)生隨機(jī)數(shù)的方法把考生分配到各個(gè)考場(chǎng)中。
5堂練習(xí):
1.在40根纖維中,有12根的長(zhǎng)度超過(guò)30mm,從中任取一根,取到長(zhǎng)度超過(guò)30mm的纖維的概率是( )
A. B. C. D.以上都不對(duì)
2.盒中有10個(gè)鐵釘,其中8個(gè)是合格的,2個(gè)是不合格的,從中任取一個(gè)恰為合格鐵釘?shù)母怕适?br />A. B. C. D.
3.在大小相同的5個(gè)球中,2個(gè)是紅球,3個(gè)是白球,若從中任取2個(gè),則所取的2個(gè)球中至少有一個(gè)紅球的概率是 。
4.拋擲2顆質(zhì)地均勻的骰子,求點(diǎn)數(shù)和為8的概率。
5.利用計(jì)算器生產(chǎn)10個(gè)1到20之間的取整數(shù)值的隨機(jī)數(shù)。
6.用0表示反面朝上,1表正面朝上,請(qǐng)用計(jì)算器做模擬擲硬幣試驗(yàn)。
6、堂練習(xí)答案:
1.B[提示:在40根纖維中,有12根的長(zhǎng)度超過(guò)30mm,即基本事總數(shù)為40,且它們是等可能發(fā)生的,所求事包含12個(gè)基本事,故所求事的概率為 ,因此選B.]
2.C[提示:(方法1)從盒中任取一個(gè)鐵釘包含基本事總數(shù)為10,其中抽到合格鐵訂(記為事A)包含8個(gè)基本事,所以,所求概率為P(A)= = .(方法2)本題還可以用對(duì)立事的概率公式求解,因?yàn)閺暮兄腥稳∫粋(gè)鐵釘,取到合格品(記為事A)與取到不合格品(記為事B)恰為對(duì)立事,因此,P(A)=1-P(B)=1- = .]
3. [提示;記大小相同的5個(gè)球分別為紅1,紅2,白1,白2,白3,則基本事為:(紅1,紅2),(紅1,白1),(紅1,白2)(紅1,白3),(紅2,白3),共10個(gè),其中至少有一個(gè)紅球的事包括7個(gè)基本事,所以,所求事的概率為 .本題還可以利用“對(duì)立事的概率和為1”求解,對(duì)于求“至多”“至少”等事的概率頭問(wèn)題,常采用間接法,即求其對(duì)立事的概率P(A),然后利用P(A)1-P(A)求解]。
4.解:在拋擲2顆骰子的試驗(yàn)中,每顆骰子均可出現(xiàn)1點(diǎn),2點(diǎn),…,6點(diǎn)6種不同的結(jié)果,我們把兩顆骰子標(biāo)上記號(hào)1,2以便區(qū)分,由于1號(hào)骰子的一個(gè)結(jié)果,因此同時(shí)擲兩顆骰子的結(jié)果共有6×6=36種,在上面的所有結(jié)果中,向上的點(diǎn)數(shù)之和為8的結(jié)果有(2,6),(3,5),(4,4),(5,3),(6,2)5種,所以,所求事的概率為 .
5.解:具體操作如下
鍵入

反復(fù)按 鍵10次即可得到。

6.解:具體操作如下:
鍵入

7、作業(yè):根據(jù)情況安排

8板書(shū)設(shè)計(jì):
3.2.2古典概型及隨機(jī)數(shù)的產(chǎn)生
基本概念: 例3 例5

3.2.2古典概型及隨機(jī)數(shù)的產(chǎn)生

前預(yù)習(xí)學(xué)案
一、預(yù)習(xí)目標(biāo):
1、正確理解古典概型的兩大特點(diǎn):1)試驗(yàn)中所有可能出現(xiàn)的基本事只有有限個(gè);2)每個(gè)基本事出現(xiàn)的可能性相等;
2、掌握古典概型的概率計(jì)算公式:P(A)=
3、了解隨機(jī)數(shù)的概念;
二、預(yù)習(xí)內(nèi)容:1、基本事
2、古典概率模型
3、隨機(jī)數(shù)
4、偽隨機(jī)數(shù)的概念
5、古典概型的概率計(jì)算公式:P(A)= .
三、提出疑惑
同學(xué)們,通過(guò)你的自主學(xué)習(xí),你還有哪些疑惑,請(qǐng)把它填在下面的表格中
疑惑點(diǎn)疑惑內(nèi)容

內(nèi)探究學(xué)案
一、學(xué)習(xí)目標(biāo):(1)正確理解古典概型的兩大特點(diǎn)
(2)掌握古典概型的概率計(jì)算公式:P(A)=
(3)了解隨機(jī)數(shù)的概念
二、重點(diǎn)與難點(diǎn):1、正確理解掌握古典概型及其概率公式;
2、正確理解隨機(jī)數(shù)的概念,并能應(yīng)用計(jì)算機(jī)產(chǎn)生隨機(jī)數(shù).
三、學(xué)習(xí)過(guò)程:
1、創(chuàng)設(shè)情境:(1)擲一枚質(zhì)地均勻的硬幣,結(jié)果只有2個(gè),即“正面朝上”或“反面朝上”,它們都是隨機(jī)事。
(2)一個(gè)盒子中有10個(gè)完全相同的球,分別標(biāo)以號(hào)碼1,2,3,…,10,從中任取一球,只有10種不同的結(jié)果,即標(biāo)號(hào)為1,2,3…,10。
根據(jù)上述情況,你能發(fā)現(xiàn)它們有什么共同特點(diǎn)?


2、例題:
例1 擲一顆骰子,觀察擲出的點(diǎn)數(shù),求擲得奇數(shù)點(diǎn)的概率。
解:


例2 從含有兩正品a1,a2和一次品b1的三產(chǎn)品中,每次任取一,每次取出后不放回,連續(xù)取兩次,求取出的兩產(chǎn)品中恰有一次品的概率。
解:

例3 現(xiàn)有一批產(chǎn)品共有10,其中8為正品,2為次品:
(1)如果從中取出一,然后放回,再取一,求連續(xù)3次取出的都是正品的概率;
(2)如果從中一次取3,求3都是正品的概率.
解:


例4 利用計(jì)算器產(chǎn)生10個(gè)1~100之間的取整數(shù)值的隨機(jī)數(shù)。

例5 某籃球愛(ài)好者,做投籃練習(xí),假設(shè)其每次投籃命中的概率是40%,那么在連續(xù)三次投籃中,恰有兩次投中的概率是多少?
解:


例6 你還知道哪些產(chǎn)生隨機(jī)數(shù)的函數(shù)?請(qǐng)列舉出。
解:

3、反思總結(jié)
(1)、數(shù)學(xué)知識(shí):
(2)、數(shù)學(xué)思想方法:


4、當(dāng)堂檢測(cè):
一、選擇題
1.在40根纖維中,有12根的長(zhǎng)度超過(guò)30mm,從中任取一根,取到長(zhǎng)度超過(guò)30mm的纖維的概率是( )
A. B. C. D.以上都不對(duì)
2.盒中有10個(gè)鐵釘,其中8個(gè)是合格的,2個(gè)是不合格的,從中任取一個(gè)恰為合格鐵釘?shù)母怕适?br />A. B. C. D.
3將骰子拋2次,其中向上的數(shù)之和是5的概率是( )
A、 B、 C、 D、9
二、填空題
4在大小相同的5個(gè)球中,2個(gè)是紅球,3個(gè)是白球,若從中任取2個(gè),則所取的2個(gè)球中至少有一個(gè)紅球的概率是 。
5.拋擲2顆質(zhì)地均勻的骰子,則點(diǎn)數(shù)和為8的概率為 。
三、解答題
6.用0表示反面朝上,1表正面朝上,請(qǐng)用計(jì)算器做模擬擲硬幣試驗(yàn)。

答案:1.B[提示:在40根纖維中,有12根的長(zhǎng)度超過(guò)30mm,即基本事總數(shù)為40,且它們是等可能發(fā)生的,所求事包含12個(gè)基本事,故所求事的概率為 ,因此選B.]
2.C[提示:(方法1)從盒中任取一個(gè)鐵釘包含基本事總數(shù)為10,其中抽到合格鐵訂(記為事A)包含8個(gè)基本事,所以,所求概率為P(A)= = .(方法2)本題還可以用對(duì)立事的概率公式求解,因?yàn)閺暮兄腥稳∫粋(gè)鐵釘,取到合格品(記為事A)與取到不合格品(記為事B)恰為對(duì)立事,因此,P(A)=1-P(B)=1- = .]
3A
4. [提示;記大小相同的5個(gè)球分別為紅1,紅2,白1,白2,白3,則基本事為:(紅1,紅2),(紅1,白1),(紅1,白2)(紅1,白3),(紅2,白3),共10個(gè),其中至少有一個(gè)紅球的事包括7個(gè)基本事,所以,所求事的概率為 .本題還可以利用“對(duì)立事的概率和為1”求解,對(duì)于求“至多”“至少”等事的概率頭問(wèn)題,常采用間接法,即求其對(duì)立事的概率P(A),然后利用P(A)1-P(A)求解]。
5.解:在拋擲2顆骰子的試驗(yàn)中,每顆骰子均可出現(xiàn)1點(diǎn),2點(diǎn),…,6點(diǎn)6種不同的結(jié)果,我們把兩顆骰子標(biāo)上記號(hào)1,2以便區(qū)分,由于1號(hào)骰子的一個(gè)結(jié)果,因此同時(shí)擲兩顆骰子的結(jié)果共有6×6=36種,在上面的所有結(jié)果中,向上的點(diǎn)數(shù)之和為8的結(jié)果有(2,6),(3,5),(4,4),(5,3),(6,2)5種,所以,所求事的概率為 .
6.解:具體操作如下:
鍵入


后練習(xí)與提高

一、選擇題
1、從長(zhǎng)度為1,3,5,7,9五條線段中任取三條能構(gòu)成三角形的概率是( )
A、 B、 C、 D、

2、將8個(gè)參賽隊(duì)伍通過(guò)抽簽分成A、B兩組,每組4隊(duì),其中甲、乙兩隊(duì)恰好不在同組的概率為( )
A、 B、 C、 D、

3、袋中有白球5只,黑球6只,連續(xù)取出3只球,則順序?yàn)椤昂诎缀凇钡母怕蕿? )
A、 B、 C、 D、
二、填空題
4、接連三次擲一硬幣,正反面輪流出現(xiàn)的概率等于 ,

5、在100個(gè)產(chǎn)品中,有10個(gè)是次品,若從這100個(gè)產(chǎn)品中任取5個(gè),其中恰有2個(gè)次品的概率等于 。
三、解答題
6在第1,3,5,8路公共汽車(chē)都要?康囊粋(gè)站(假定這個(gè)站只能?恳惠v汽車(chē)),有1位乘客等候第1路或第3路汽車(chē)、假定當(dāng)時(shí)各路汽車(chē)首先到站的可能性相等,求首先到站正好是這位乘客所要乘的汽車(chē)的概率、

答案
一、選擇題
1、B 2、A 3、D
二、填空題
4、
5、
三解答題解:記“首先到站的汽車(chē)正好是這位乘客所要乘的汽車(chē)”為事A,則事A的概率P(A)=
答:首先到站正好是這位乘客所要乘的汽車(chē)的概率為




本文來(lái)自:逍遙右腦記憶 http://m.yy-art.cn/gaoer/46855.html

相關(guān)閱讀:幾何概型