定義域
(高中函數(shù)定義)設A,B是兩個非空的數(shù)集,如果按某個確定的對應關系f,使對于集合A中的任意一個數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對應,那么就稱f:A--B為集合A到集合B的一個函數(shù),記作y=f(x),x屬于集合A。其中,x叫作自變量,x的取值范圍A叫作函數(shù)的定義域;
值域
名稱定義
函數(shù)中,應變量的取值范圍叫做這個函數(shù)的值域函數(shù)的值域,在數(shù)學中是函數(shù)在定義域中應變量所有值的集合
常用的求值域的方法
(1)化歸法;(2)圖象法(數(shù)形結合),
(3)函數(shù)單調性法,
(4)配方法,(5)換元法,(6)反函數(shù)法(逆求法),(7)判別式法,(8)復合函數(shù)法,(9)三角代換法,(10)基本不等式法等
關于函數(shù)值域誤區(qū)
定義域、對應法則、值域是函數(shù)構造的三個基本“元件”。平時數(shù)學中,實行“定義域優(yōu)先”的原則,無可置疑。然而事物均具有二重性,在強化定義域問題的同時,往往就削弱或談化了,對值域問題的探究,造成了一手“硬”一手“軟”,使學生對函數(shù)的掌握時好時壞,事實上,定義域與值域二者的位置是相當?shù),絕不能厚此薄皮,何況它們二者隨時處于互相轉化之中(典型的例子是互為反函數(shù)定義域與值域的相互轉化)。如果函數(shù)的值域是無限集的話,那么求函數(shù)值域不總是容易的,反靠不等式的運算性質有時并不能奏效,還必須聯(lián)系函數(shù)的奇偶性、單調性、有界性、周期性來考慮函數(shù)的取值情況。才能獲得正確答案,從這個角度來講,求值域的問題有時比求定義域問題難,實踐證明,如果加強了對值域求法的研究和討論,有利于對定義域內函的理解,從而深化對函數(shù)本質的認識。
“范圍”與“值域”相同嗎?
“范圍”與“值域”是我們在學習中經(jīng)常遇到的兩個概念,許多同學常常將它們混為一談,實際上這是兩個不同的概念!爸涤颉笔撬泻瘮(shù)值的集合(即集合中每一個元素都是這個函數(shù)的取值),而“范圍”則只是滿足某個條件的一些值所在的集合(即集合中的元素不一定都滿足這個條件)。也就是說:“值域”是一個“范圍”,而“范圍”卻不一定是“值域”。
冪函數(shù)
掌握冪函數(shù)的內部規(guī)律及本質是學好冪函數(shù)的關鍵所在,下面是精品學習網(wǎng)高中頻道為大家整理的冪函數(shù)公式大全,希望對廣大朋友有所幫助。
定義:
形如y=x^a(a為常數(shù))的函數(shù),即以底數(shù)為自變量冪為因變量,指數(shù)為常量的函數(shù)稱為冪函數(shù)。
定義域和值域:
當a為不同的數(shù)值時,冪函數(shù)的定義域的不同情況如下:如果a為任意實數(shù),則函數(shù)的定義域為大于0的所有實數(shù);如果a為負數(shù),則x肯定不能為0,不過這時函數(shù)的定義域還必須根[據(jù)q的奇偶性來確定,即如果同時q為偶數(shù),則x不能小于0,這時函數(shù)的定義域為大于0的所有實數(shù);如果同時q為奇數(shù),則函數(shù)的定義域為不等于0的所有實數(shù)。當x為不同的數(shù)值時,冪函數(shù)的值域的不同情況如下:在x大于0時,函數(shù)的值域總是大于0的實數(shù)。在x小于0時,則只有同時q為奇數(shù),函數(shù)的值域為非零的實數(shù)。而只有a為正數(shù),0才進入函數(shù)的值域
本文來自:逍遙右腦記憶 http://m.yy-art.cn/gaoyi/899674.html
相關閱讀:高一歷史必修一知識點總結