【編者按】往往有同學(xué)進(jìn)入高中以后不能適應(yīng)數(shù)學(xué)學(xué)習(xí),進(jìn)而影響到學(xué)習(xí)的積極性,甚至成績一落千丈。為什么會(huì)這樣呢?讓我們先看看高中數(shù)學(xué)和初中數(shù)學(xué)有些什么樣的轉(zhuǎn)變吧。
一、高中數(shù)學(xué)的特點(diǎn)1、 理論加強(qiáng)
2、 課程增多
3、 難度增大
4、 要求提高
二、掌握數(shù)學(xué)思想高中數(shù)學(xué)從學(xué)習(xí)方法和思想方法上更接近于高等數(shù)學(xué)。學(xué)好它,需要我們從方法論的高度來掌握它。我們在研究數(shù)學(xué)問題時(shí)要經(jīng)常運(yùn)用唯物辯證的思想去解決數(shù)學(xué)問題。數(shù)學(xué)思想,實(shí)質(zhì)上就是唯物辯證法在數(shù)學(xué)中的運(yùn)用的反映。中學(xué)數(shù)學(xué)學(xué)習(xí)要重點(diǎn)掌握的的數(shù)學(xué)思想有以上幾個(gè):集合與對應(yīng)思想,初步公理化思想,數(shù)形結(jié)合思想,運(yùn)動(dòng)思想,轉(zhuǎn)化思想,變換思想。
例如,數(shù)列、一次函數(shù)、解析幾何中的直線幾個(gè)概念都可以用函數(shù)(特殊的對應(yīng))的概念來統(tǒng)一。又比如,數(shù)、方程、不等式、數(shù)列幾個(gè)概念也都可以統(tǒng)一到函數(shù)概念。
再看看下面這個(gè)運(yùn)用“矛盾”的觀點(diǎn)來解題的例子。已知?jiǎng)狱c(diǎn)Q在圓x2+y2=1上移動(dòng),定點(diǎn)P(2,0),求線段PQ中點(diǎn)的軌跡。
分析此題,圖中P、Q、M三點(diǎn)是互相制約的,而Q點(diǎn)的運(yùn)動(dòng)將帶動(dòng)M點(diǎn)的運(yùn)動(dòng);主要矛盾是點(diǎn)Q的運(yùn)動(dòng),而點(diǎn)Q的運(yùn)動(dòng)軌跡遵循方程x02+y02=1;次要矛盾關(guān)系:M是線段PQ的中點(diǎn),可以用中點(diǎn)公式將M的坐標(biāo)(x,y)用點(diǎn)Q的坐標(biāo)表示出來。
x=(x0+2)/2
y=y0/2
顯然,用代入的方法,消去題中的x0、y0就可以求得所求軌跡。
數(shù)學(xué)思想方法與解題技巧是不同的,在證明或求解中,運(yùn)用歸納、演繹、換元等方法解題問題可以說是解題的技術(shù)性問題,而數(shù)學(xué)思想是解題時(shí)帶有指導(dǎo)性的普遍思想方法。在解一道題時(shí),從整體考慮,應(yīng)如何著手,有什么途徑?就是在數(shù)學(xué)思想方法的指導(dǎo)下的普遍性問題。
有了數(shù)學(xué)思想以后,還要掌握具體的方法,比如:換元、待定系數(shù)、數(shù)學(xué)歸納法、分析法、綜合法、反證法等等。只有在解題思想的指導(dǎo)下,靈活地運(yùn)用具體的解題方法才能真正地學(xué)好數(shù)學(xué),僅僅掌握具體的操作方法,而沒有從解題思想的角度考慮問題,往往難于使數(shù)學(xué)學(xué)習(xí)進(jìn)入更高的層次,會(huì)為今后進(jìn)入大學(xué)深造帶來很有麻煩。
在具體的方法中,常用的有:觀察與實(shí)驗(yàn),聯(lián)想與類比,比較與分類,分析與綜合,歸納與演繹,一般與特殊,有限與無限,抽象與概括等。
本文來自:逍遙右腦記憶 http://m.yy-art.cn/gaozhong/204504.html
相關(guān)閱讀:蘇教版高一數(shù)學(xué)必修一測試卷[1]