初中數(shù)學(xué)輔助線的做法

編輯: 逍遙路 關(guān)鍵詞: 初中數(shù)學(xué) 來源: 高中學(xué)習(xí)網(wǎng)

很多同學(xué)到對如何作輔助線頭疼,其實(shí),做什么都是有規(guī)律可循的,所以,你只要抓住規(guī)律,即可做出需要的輔助線。

一、中點(diǎn)、中線段、延長線、平行線

如遇條件中有中點(diǎn),中線、中位線等,那么過中點(diǎn),延長中線或中位線作輔助線,使延長的某一段等于中線或中位線;另一種輔助線是過中點(diǎn)作已知邊或線段的平行線,以達(dá)到應(yīng)用某個(gè)定理或造成全等的目的。

二、垂線、分角線、翻轉(zhuǎn)全等連

如遇條件中,有垂線或角的平分線,可以把圖形按軸對稱的方法,并借助其他條件,而旋轉(zhuǎn)180度,得到全等形,,這時(shí)輔助線的做法就會應(yīng)運(yùn)而生。其對稱軸往往是垂線或角的平分線。

三、邊邊若相等,旋轉(zhuǎn)做實(shí)驗(yàn)

如遇條件中有多邊形的兩邊相等或兩角相等,有時(shí)邊角互相配合,然后把圖形旋轉(zhuǎn)一定的角度,就可以得到全等形,這時(shí)輔助線的做法仍會應(yīng)運(yùn)而生。其對稱中心,因題而異,有時(shí)沒有中心。故可分“有心”和“無心”旋轉(zhuǎn)兩種。

四、造角、平、相似、和、積、差、商見

如遇條件中有多邊形的兩邊相等或兩角相等,欲證線段或角的和差積商,往往與相似形有關(guān)。在制造兩個(gè)三角形相似時(shí),一般地,有兩種方法:第一,造一個(gè)輔助角等于已知角;第二,是把三角形中的某一線段進(jìn)行平移。故作歌訣:“造角、平、相似,和差積商見。” 托列米定理和梅葉勞定理的證明輔助線分別是造角和平移的代表)

五、兩圓若相交,連心公共弦

如果條件中出現(xiàn)兩圓相交,那么輔助線往往是連心線或公共弦。

六、兩圓相切、離,連心,公切線

如條件中出現(xiàn)兩圓相切(外切,內(nèi)切),或相離(內(nèi)含、外離),那么,輔助線往往是連心線或內(nèi)外公切線。

七、切線連直徑,直角與半圓

如果條件中出現(xiàn)圓的切線,那么輔助線是過切點(diǎn)的直徑或半徑使出現(xiàn)直角;相反,條件中是圓的直徑,半徑,那么輔助線是過直徑(或半徑)端點(diǎn)的切線。即切線與直徑互為輔助線。 如果條件中有直角三角形,那么作輔助線往往是斜邊為直徑作輔助圓,或半圓;相反,條件中有半圓,那么在直徑上找圓周角??直角為輔助線。即直角與半圓互為輔助線。

八、弧、弦、弦心距;平行、等距、弦

如遇弧,則弧上的弦是輔助線;如遇弦,則弦心距為輔助線。 如遇平行線,則平行線間的距離相等,距離為輔助線;反之,亦成立。 如遇平行弦,則平行線間的距離相等,所夾的弦亦相等,距離和所夾的弦都可視為輔助線,反之,亦成立。 有時(shí),圓周角,弦切角,圓心角,圓內(nèi)角和圓外角也存在因果關(guān)系互相聯(lián)想作輔助線。

九、面積找底高,多邊變?nèi)?/p>

如遇求面積,(在條件和結(jié)論中出現(xiàn)線段的平方、乘積,仍可視為求面積),往往作底或高為輔助線,而兩三角形的等底或等高是思考的關(guān)鍵。 如遇多邊形,想法割補(bǔ)成三角形;反之,亦成立。 另外,我國明清數(shù)學(xué)家用面積證明勾股定理,其輔助線的做法,即“割補(bǔ)”有二百多種,大多數(shù)為“面積找底高,多邊變?nèi)叀薄?/p>
本文來自:逍遙右腦記憶 http://m.yy-art.cn/chuzhong/1124427.html

相關(guān)閱讀:關(guān)于初中數(shù)學(xué)分層作業(yè)的嘗試