2018學(xué)年八年級(jí)數(shù)學(xué)上期中試卷(聊城市臨清市附答案和解釋)

編輯: 逍遙路 關(guān)鍵詞: 八年級(jí) 來(lái)源: 高中學(xué)習(xí)網(wǎng)

2018-2019學(xué)年山東省聊城市臨清市八年級(jí)(上)期中數(shù)學(xué)試卷
 
一、選擇題(本大題共12小題,每小題3分,共36分)
1.(3分)下面四個(gè)圖形分別是北大、清華、復(fù)旦和浙大4所大學(xué)的校標(biāo)LOGO,其中是軸對(duì)稱圖形的是( 。
A.  B.  C.  D.
2.(3分)如圖,點(diǎn)A、D、C、E在同一條直線上,AB∥EF,AB=EF,∠B=∠F,AE=10,AC=6,則CD的長(zhǎng)為(  )
 
A.2 B.4 C.4.5 D.3
3.(3分)在代數(shù)式 ,1+ ,?3x, , 中,是分式的有( 。
A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)
4.(3分)如圖,已知AB,CD交于點(diǎn)O,AO=CO,BO=DO,則在以下結(jié)論中:
①AD=BC;②AD∥BC;③∠A=∠C;④∠B=∠D;⑤∠A=∠B.
正確結(jié)論的個(gè)數(shù)為(  )

A.2個(gè) B.3個(gè) C.4個(gè) D.5個(gè)
5.(3分)如圖,在△ABC中,D、E分別是AC、BC上的點(diǎn),若△ADB≌△EDB≌△EDC,則∠BAC的度數(shù)是
( 。
 
A.90° B.100° C.105° D.120°
6.(3分)當(dāng)x為任意實(shí)數(shù)時(shí),下列分式一定有意義的是( 。
A.  B.  C.  D.
7.(3分)把一張長(zhǎng)方形紙片按如圖①、圖②的方式從右向左連續(xù)對(duì)折兩次后得到圖③,再在圖③中挖去一個(gè)如圖所示的三角形小孔,則重新展開(kāi)后得到的圖形是(  )
 
A.  B.  C.  D.
8.(3分)若分式 中的x,y都擴(kuò)大2倍,則分式的值( 。
A.?dāng)U大2倍 B.縮小2倍 C.不變 D.?dāng)U大4倍
9.(3分)下列各式中,正確的是( 。
A.  B.
C.  D.
10.(3分)如圖,在Rt△ABC中,∠C =90°,AD是△ABC的角平分線,若CD=4,AC=12,AB=15,則△ABC的面積為( 。
 
A.48 B.50 C.54 D.60
11.(3分)如圖,在△ABC中,∠C=90°,∠B=30°,以點(diǎn)A為圓心,任意長(zhǎng)為半徑畫弧分別交AB,AC于點(diǎn)M和N,再分別以點(diǎn)M,N為圓心畫弧,兩弧交于點(diǎn)P,連結(jié)AP并延長(zhǎng)交BC于點(diǎn)D,則下列說(shuō)法中正確的個(gè)數(shù)是( 。
①AD是∠BAC的平分線
②∠ADC=60°
③∠BAD=∠B
④點(diǎn)D到直線AB的距離等于CD的長(zhǎng)度.
 
A.1 B.2 C.3 D.4
12.(3分)如圖是一個(gè)6×6的正方形網(wǎng)格,每個(gè)小正方形的頂點(diǎn)都是格點(diǎn),等腰△ABC的頂點(diǎn)都是圖中的格點(diǎn),其中點(diǎn)A、點(diǎn)B的位置如圖所示,則點(diǎn)C可能的位置共有( 。
 
A.12個(gè) B.11個(gè)  C.10個(gè) D.9個(gè)
 
二、填空題(本大題共5小題,每小題3分,共15分)
13.(3分)如圖,△ABD≌△ACE,AD =8cm,AB=3cm,則BE=     cm.
 
14.(3分)化簡(jiǎn): 的結(jié)果是     .
15.(3分)如圖,E的矩形ABCD中BC邊的中點(diǎn),將△ABE沿AE折疊到△AEF,F(xiàn)在矩形ABCD內(nèi)部,延長(zhǎng)AF交DC于G點(diǎn).若∠AEB=55°,求∠DAF=     °.
 
16.(3分)等腰三角形的一個(gè)內(nèi)角50°,則這個(gè)三角形的底角是     .
17.(3分)如圖,P為∠AOB內(nèi)一定點(diǎn),M、N分別是射線OA、OB上一點(diǎn),當(dāng)△PMN周長(zhǎng)最小時(shí),∠MPN=80°,則∠AOB=     .
 
 
三、解答題(本大題共8小題,共69分)
18.(12分)計(jì)算:
(1) •
(2) ÷
(3) ?
(4)( + )÷ .
19.(6分)某中學(xué)八年級(jí)的同學(xué)參加義務(wù)勞動(dòng),其中有兩個(gè)班的同學(xué)在D、E兩處參加勞動(dòng),另外兩個(gè)班的同學(xué)在道路AB、AC兩處勞動(dòng)(如圖),現(xiàn)要在道路AB、AC的交叉區(qū)域內(nèi)設(shè)置一個(gè)茶水供應(yīng)點(diǎn)P,使P到AB、AC的距離相等,且使PD=PE,請(qǐng)你找出點(diǎn)P的位置.
 
20.(6分)先化簡(jiǎn):(a? )÷ ,然后給a選擇一個(gè)你喜歡的數(shù)代入求值.
21.(7分)如圖,已知:AB=AD,BC=DE,AC=AE,∠1=42°,求∠3的度數(shù).
 
22.(8分)如圖,AB=AC,AC的垂直平分線MN交AB于D,交AC于E.
(1)若∠A=40°,求∠BCD的度數(shù);
(2)若AE=5,△BCD的周長(zhǎng)17,求△ABC的周長(zhǎng).
 
23.(8分)王強(qiáng)同學(xué)用10塊高度都是2cm的相同長(zhǎng)方體小木塊,壘了兩堵與地面垂直的木墻,木墻之間剛好可以放進(jìn)一個(gè)等腰直角三角板(AC=BC,∠ACB=90°),點(diǎn)C在DE上,點(diǎn)A和B分別與木墻的頂端重合,求兩堵木墻之間的距離.
 
24.(10分)已知:如圖,∠B=∠C=90°,M是BC的中點(diǎn),且DM平分∠ADC.
(1)求證:AM平分∠DAB.
(2)試說(shuō)明線段DM與AM有怎樣的位置關(guān)系?并證明你的結(jié)論.
 
25.(12分)如圖,△ABC中,∠BAC=90°,AB=AC,點(diǎn)D是斜邊BC的中點(diǎn).
(1)如圖①,若點(diǎn)E,F(xiàn)分別在邊AB,AC上,且AE=CF,連接DE,DF,EF,觀察,猜想△DEF是否為等腰直角三角形,并證明你的猜想.
(2)如圖②,若點(diǎn)E,F(xiàn)分別在邊AB,CA的延長(zhǎng)線上,且AE=CF,連接DE,DF,EF,那么(1)中所得到的結(jié)論還成立嗎?如果成立,請(qǐng)給出證明;如果不成立,說(shuō)明你的理由.

 

2018-2019學(xué)年山東省聊城市臨清市八年級(jí)(上)期中數(shù)學(xué)試卷
參考答案與試題解析
 
一、選擇題(本大題共12小題,每小題3分,共36分)
1.(3分)下面四個(gè)圖形分別是北大、清華、復(fù)旦和浙大4所大學(xué)的校標(biāo)LOGO,其中是軸對(duì)稱圖形的是(  )
A.  B.  C.  D.
【解答】解:A、是軸對(duì)稱圖形,本選項(xiàng)正確;
B、不是軸對(duì)稱圖形,本選項(xiàng)錯(cuò)誤;
C、不是軸對(duì)稱圖形,本選項(xiàng)錯(cuò)誤;
D、不是軸對(duì)稱圖形,本選 項(xiàng)錯(cuò)誤.
故選A.
 
2.(3分)如圖,點(diǎn)A、D、C、E在同一條直線上,AB∥EF,A B=EF,∠B=∠F,AE=10,AC=6,則CD的長(zhǎng)為( 。
 
A.2 B.4 C.4.5 D.3
【解答】解:∵AB∥EF,
∴∠A=∠E,
在△ABC和△EFD中,
 ,
∴△ABC≌△EFD(ASA),
∴AC=ED=6,
∴AD=AE?ED=10?6=4,
∴CD=AC?AD=6?4=2.
故選A.
 
3.(3分)在代數(shù)式 ,1+ ,?3x, , 中,是分式的有(  )
A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)
【解答】解:在下列代數(shù)式中式 ,1+ ,?3x, , ,
分式有,1+ , ,共有2個(gè).
故選B.
 
4.(3分)如圖,已知AB,CD交于點(diǎn)O,AO=CO,BO=DO,則在以下結(jié)論中:
①AD=BC;②AD∥BC;③∠A=∠C;④∠B=∠D;⑤∠A=∠B.
正確結(jié)論的個(gè)數(shù)為(  )
 
A.2個(gè) B.3個(gè) C.4個(gè) D.5個(gè)
【解答】解:在△AOD和△COB中
 ,
∴△AOD≌△COB(SAS),
∴∠A=∠C,∠B=∠D,AD=CB,故①,③,④正確,
∴正確的有3個(gè).
故選B
 
5.(3分)如圖,在△ABC中,D、E分別是AC、BC上的點(diǎn),若△ADB≌△EDB≌△EDC,則∠BAC的度數(shù)是
(  )
 
A.90° B.100° C.105° D.120°
【解答】解:∵△ADB≌△EDB≌△EDC,
∴∠A=∠BED=∠CED,∠ABD=∠EBD=∠C,
∵∠BED+∠CED=180°,
∴∠A=∠BED=∠CED=90°.
故選:A.
 
6.( 3分)當(dāng)x為任意實(shí)數(shù)時(shí),下列分式一定有意義的是(  )
A.  B.  C.  D.
【解答】解:A、x2+1≠0,因此此分式當(dāng)x為任意實(shí)數(shù)時(shí)一定有意義,故此選項(xiàng)正確;
B、當(dāng)x=? 時(shí),分母等于零,分式無(wú)意義,故此選項(xiàng)錯(cuò)誤;
C、當(dāng)x=?1時(shí),分母等于零,分式無(wú)意義,故此選項(xiàng)錯(cuò)誤;
D、當(dāng)x=0時(shí),分母等于零,分式無(wú)意義,故此選項(xiàng)錯(cuò)誤;
故選:A.
 
7.(3分)把一張長(zhǎng)方形紙片按如圖①、圖②的方式從右向左連續(xù)對(duì)折兩次后得到圖③,再在圖③中挖去一個(gè)如圖所示的三角形小孔,則重新展開(kāi)后得到的圖形是( 。
 
A. B. C.  D.
【解答】解:重新展開(kāi)后得到的圖形是C,
故選C.
 
8.(3分)若分式 中的x,y都擴(kuò)大2倍,則分式的值( 。
A.?dāng)U大2倍 B.縮小2倍 C.不變 D.?dāng)U大4倍
【解答】解:∵ =2× ,
∴分式 中的x,y都擴(kuò)大2倍,則分式的值擴(kuò)大2倍,
故選A.
 
9.(3分)下列各式中,正確的是(  )
A.  B.
C.  D.
【解答】解:A、分式的分子和分母同時(shí)乘以一個(gè)不為0的數(shù)時(shí),分式的值不變,即 ,故A選項(xiàng)錯(cuò)誤;
B、 不能再進(jìn)行約分, ,故B選項(xiàng)錯(cuò)誤;
C、只有分式的分子和分母有相同的公因式才能約分, ,故C選項(xiàng)錯(cuò)誤;
D、 ,故D選項(xiàng)正確,
故選:D.
 
10.(3分)如圖,在Rt△ABC中,∠C=90°,AD是△ABC的角平分線,若CD=4,AC=12,AB=15,則△ABC的面積為(  )
 
A.48 B.50 C.54 D.60
【解答】解:作DE⊥AB于E,
∵AD是△ABC的角平分線,∠C=90°,DE⊥AB,
∴DE=CD=4,
∴△ABC的面積為: ×AC×DC+ ×AB×DE=54,
故選:C.
 
 
11.(3分)如圖,在△ABC中,∠C=90°,∠B=30°,以點(diǎn)A為圓心,任意長(zhǎng)為半徑畫弧分別交AB,AC于點(diǎn)M和N,再分別以點(diǎn)M,N為圓心畫弧,兩弧交于點(diǎn)P,連結(jié)AP并延長(zhǎng)交BC于點(diǎn)D,則下列說(shuō)法中正確的個(gè)數(shù)是( 。
①AD是∠BAC的平分線
②∠ADC=60°
③∠BAD=∠B
④點(diǎn)D到直線AB的距離等于CD的長(zhǎng)度.
 
A.1 B.2 C.3 D.4
【解答】解:∵∠C=90°,∠B=30°,
∴∠BAC=60°,
由作法得AD平分∠BAC,所以①正確;
∴∠BAD=∠CAD= ∠BAC=30°,
∴∠ADC=90°?∠CAD=60°,所以②正確;
∠BAD=∠B,所以③正確;
∵AD為角平分線,
∴點(diǎn)D到AC的距離等于點(diǎn)D到AB的距離,
而點(diǎn)D到直線AC的距離等于CD的長(zhǎng)度,
∴點(diǎn)D到直線AB的距離等于CD的長(zhǎng)度,所以④正確.
故選D.
 
12.(3分)如圖是一個(gè)6×6的正方形網(wǎng)格,每個(gè)小正方形的頂點(diǎn)都是格點(diǎn),等腰△ABC的頂點(diǎn)都是圖中的格點(diǎn),其中點(diǎn)A、點(diǎn)B的位置如圖所示,則點(diǎn)C可能的位置共有( 。
 
A.12個(gè) B.11個(gè) C.10個(gè) D.9個(gè)
【解答】解:如圖:
 
符合條件的點(diǎn)C一共有10個(gè).
故選C.
 
二、填空題(本大題共5小題,每小題3分,共15分)
13.(3分)如圖,△ABD≌△ACE,AD=8cm,AB=3cm,則BE= 5 cm.
 
【解答】解:∵△ABD≌△ACE,
∴AD=AE,AC=AB,
又AD=8cm,AB=3cm,
∵BE=AE?AB=8?3=5,
∴BE=5cm.
故填5.
 
14.(3分)化簡(jiǎn):   的結(jié)果是 m+3。
【解答】解:
=
=
=
=m+3.
故答案為:m+3.
 
15.(3分)如圖,E的矩形ABCD中BC邊的中點(diǎn),將△ABE沿AE折疊到△AEF,F(xiàn)在矩形ABCD內(nèi)部,延長(zhǎng)AF交DC于G點(diǎn).若∠AEB=55°,求∠DAF= 20 °.

【解答】解:∵△ABE沿AE折疊到△AEF,
∴∠BAE=∠FAE,
∵∠AEB=55°,∠ABE=90°,
∴∠BAE=90°?55°=35°,
∴∠DAF=∠BAD?∠BAE?∠FAE=90°?35°?35°=20°.
故答案為:20
 
16.(3分)等腰三角形的一個(gè)內(nèi)角50°,則這個(gè)三角形的底角是 50°或65° .
【解答】解:當(dāng)50°的角是底角時(shí),三角形的底角就是50°;當(dāng)50°的角是頂角時(shí),兩底角相等,根據(jù)三角形的內(nèi)角和定理易得底角是65°.
故答案是:50°或65°.
 
17.(3分)如圖,P為∠AOB內(nèi)一定點(diǎn),M、N分別是射線OA、OB上一點(diǎn),當(dāng)△PMN周長(zhǎng)最小時(shí),∠MPN=80°,則∠AOB= 50° .
 
【解答】解:作P關(guān)于OA,OB的對(duì)稱點(diǎn)P1,P2.連接OP1,OP2.則當(dāng)M,N是P1P2與OA,OB的交點(diǎn)時(shí),△PMN的周長(zhǎng)最短,連接P1O、P2O,
∵PP1關(guān)于OA對(duì)稱,∠MPN=80°
∴∠P1OP=2∠MOP,OP1=OP,P1M=PM,∠OP1M=∠OPM,
同理,∠P2OP=2∠NOP,OP=OP2,
∴∠P1OP2=∠P1OP+∠P2OP=2(∠MOP+∠NOP)=2∠AOB,OP1=OP2=OP,
∴△P1OP2是等腰三角形.
∴∠OP2N=∠OP1M,
∴∠P1OP2=180°?80°=100°,
∴∠AOB=50°,
故答案為:50°
 
 
三、解答題(本大題共8小 題,共69分)
18.(12分)計(jì)算:
(1) •
(2) ÷
(3) ? 
(4)( + )÷ .
【解答】解:(1) •
=
= ;
(2) ÷
=
=
= ;
(3) ?
=
=
=
=1;
(4)( + )÷
=
=(m?1)2+2m
=m2?2m+1+2m
=m2+1.
 
19.(6分)某中學(xué)八年級(jí)的同學(xué)參加義務(wù)勞動(dòng),其中有兩個(gè)班的同學(xué)在D、E兩處參加勞動(dòng),另外兩個(gè)班的同學(xué)在道路AB、AC兩處勞動(dòng)(如圖),現(xiàn)要在道路AB、AC的交叉區(qū)域內(nèi)設(shè)置一個(gè)茶水供應(yīng)點(diǎn)P,使P到AB、AC的距離相等,且使PD=PE,請(qǐng)你找出點(diǎn)P的位置.
 
【解答】解:連接DE,作DE的中垂線;作∠BAC的角平分線交DE的中垂線于點(diǎn)P;如圖
 
 
20.(6分)先化簡(jiǎn):(a? )÷ ,然后給a選擇一個(gè)你喜歡的數(shù)代入求值.
 【解答】解:原式= • =? • =?(a?1)=1?a,
當(dāng)a=2時(shí),原式=?1.
 
21.(7分)如圖,已知:AB=AD,BC=DE,AC=AE,∠1=42°,求∠3的度數(shù).
 
【解答】解:∵在△ABC和△ADE中,
 ,
∴△ABC≌△ADE,(SSS)
∴∠ADE=∠B,
∵∠1+∠B+∠ADB=180°
∠3+∠ADE+∠ADB=180°
∴∠3=∠1=42°.
 
22.(8分)如圖,AB=AC,AC的垂直平分線MN交AB于D,交AC于E.
(1)若∠A=40°,求∠BCD的度數(shù);
(2)若AE=5,△BCD的周長(zhǎng)17,求△ABC的周長(zhǎng).
 
【解答】解:(1)∵AB=AC
∴∠B=∠ACB= (180°?∠A)=70°,
∵M(jìn)N垂直平分線AC
∴AD=CD,
∴∠ACD=∠A=40°,
∴∠BCD=∠ACB?∠ACD=70°?40°=30°;
(2)∵M(jìn)N是AC的垂直平分線
∴AD=DC,AC=2AE=10,
∴AB=AC=10,
∵△BCD的周長(zhǎng)=BC+CD+BD=AB+BC=17,
∴△ABC的周長(zhǎng)=AB+BC+AC=17+10=27.
 
23.(8分)王強(qiáng)同學(xué)用10塊高度都是2cm的相同長(zhǎng)方體小木塊,壘了兩堵與地面垂直的木墻,木墻之間剛好可以放進(jìn)一個(gè)等腰直角三角板(AC=BC,∠ACB=90°),點(diǎn)C在DE上,點(diǎn)A和B分別與木墻的頂端重合,求兩堵木墻之間的距離.
 
【解答】解:由題意得:AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,
∴∠ADC=∠CEB=90°,
∴∠ACD+∠BCE=90°,∠ACD+∠DAC=90°,
∴∠BCE=∠DAC,
在△ADC和△CEB中,
 ,
∴△ADC≌△CEB(AAS);
由題意得:AD=EC=6cm,DC=BE=14cm,
∴DE=DC+CE=20(cm),
答:兩堵木墻之間的距離為20cm.
 
 
24.(10分)已知:如圖,∠B=∠C=90°, M是BC的中點(diǎn),且DM平分∠ADC.
(1)求證:AM平分∠DAB.
(2)試說(shuō)明線段DM與AM有怎樣的位置關(guān)系?并證明你的結(jié)論.
 
【解答】(1)證明:過(guò)M作ME⊥AD于E,
∵DM平分∠ADC,∠C=90°,ME⊥AD,
∴MC=ME,
∵M(jìn)為BC的中點(diǎn),
∴BM=MC=ME,
∵∠B=90°,ME⊥AD,
∴AM平分∠DAB;
(2)AM⊥DM,
證明如下:
∵AB∥DC,
∴∠BAD+∠ADC=180°,
∵AM平分∠DAB,DM平分∠ADC,
∴∠MAD= ∠BAD,∠MDA= ∠ADC,
∴∠MAD+∠MDA=90°,
∴∠AMD=90°,
∴AM⊥DM.
 
 
25.(12分)如圖,△ABC中,∠BAC=90°,AB=AC,點(diǎn)D是斜邊BC的中點(diǎn).
(1)如圖①,若點(diǎn)E,F(xiàn)分別在邊AB,AC上,且AE=CF,連接DE,DF,EF,觀察,猜想△DEF是否為等腰直角三角形,并證明你的猜想.
(2)如圖②, 若點(diǎn)E,F(xiàn)分別在邊AB,CA的延長(zhǎng)線上,且AE=CF,連接DE,DF,EF,那么(1)中所得到的結(jié)論還成立嗎?如果成立,請(qǐng)給出證明;如果不成立,說(shuō)明你的理由.
 
【解答】解:(1)△DEF為等腰直角三角形.
證明如下:
∵∠BAC=90°,AB=AC,
∴∠B=∠C=45°.
∵點(diǎn)D是斜邊BC的中點(diǎn),
∴AD是BC邊上的中線.
∴AD⊥BC,∠BAD=∠CAD= ∠BAC= ×90°=45°,
∴∠ADC=90°,∠BAD=∠CAD=∠C
∴DA=DC,
在△ADE和△CDF中
 
∴△ADE≌△CDF(SAS),
∴DE=DF,∠ADE=∠CDF,
∴∠EDF=∠ADE+∠ADF=∠CDF+∠ADF=∠ADC=90°,
∴△DEF為等腰直角三角形;

(2)成立.
證明如下:
∵∠BAC=90°,AB=AC,
∴∠B=∠C=45°.
∵點(diǎn)D是斜邊BC的中點(diǎn),
∴AD是BC邊上的中線.
∴AD⊥BC,∠BAD=∠CAD= ∠BAC= ×90°=45°,
∴∠ADB=90°,∠BAD=∠CAD=∠C,
∴DA=DC,
在△ADE和△CDF中
 
∴△ADE≌△CDF(SAS),
∴DE=DF,∠ADE=∠CDF,
∴∠EDF=∠ADE+∠ADF=∠CDF+∠ADF=∠ADB=90°
∴△DEF為等腰直角三角形.


本文來(lái)自:逍遙右腦記憶 http://m.yy-art.cn/chuer/1155493.html

相關(guān)閱讀:2018南陽(yáng)市鎮(zhèn)平縣九年級(jí)數(shù)學(xué)調(diào)研測(cè)試題(帶答案)