數(shù)學(xué)家的故事:列昂哈德?歐拉

編輯: 逍遙路 關(guān)鍵詞: 高中數(shù)學(xué) 來(lái)源: 高中學(xué)習(xí)網(wǎng)

開除回家

列昂哈德·歐拉是18世紀(jì)數(shù)學(xué)界的中心人物。他在幾何、微積分、力學(xué)、天文學(xué)、數(shù)論,甚至在生物學(xué)等方面都有著重要建樹。特別是在天災(zāi)人禍的打擊面前,歐拉仍然頑強(qiáng)不屈、進(jìn)擊不止,為后人留下了寶貴的財(cái)富,充分表現(xiàn)了這位數(shù)學(xué)家對(duì)數(shù)學(xué)信念的執(zhí)著追求。他堪稱我們大家的楷模,是我們所有人的老師。

歐拉降生在一個(gè)鄉(xiāng)村牧師的家庭,也因此,他才能在鄰居同年齡孩子羨慕和妒忌的目光下,進(jìn)入那座令人矚目、神往的學(xué)校。對(duì)于老歐拉來(lái)說(shuō),這是理所當(dāng)然的,憑著自己的家傳祖教,憑著小歐拉的聰明伶俐,兒子將來(lái)肯定是一名出類拔蘋的教門后起之秀,或許能進(jìn)入羅馬教廷去供職妮?每當(dāng)想起兒子的錦繡前程,以及因此而來(lái)的榮譽(yù),老歐拉總是樂(lè)不可支。

自從歐拉在課堂上汲取了許多高遠(yuǎn)深?yuàn)W的學(xué)問(wèn)之后,對(duì)自然界的了解就更加充滿信心,但與此同時(shí)又對(duì)一些問(wèn)題疑惑不解,如:天上的星星有多少顆?他百思不得其解,只好求教于父親和老師。老歐拉對(duì)這類稀奇古怪的問(wèn)題膛目結(jié)舌,無(wú)言以答;老師也只是溫和地摸著小歐拉的頭頂,漫不經(jīng)心地說(shuō):“這是無(wú)關(guān)緊要的。我們只需知道,天空上的星星都是上帝親手鑲上去的!边@真的無(wú)關(guān)緊要嗎?既然上帝親手制作了星星,為什么記不住它們的數(shù)目呢?小歐拉開始對(duì)信仰上帝的絕對(duì)權(quán)威產(chǎn)生了動(dòng)搖的念頭,他不止一次地問(wèn)道:上帝到底在哪里?他果真無(wú)時(shí)不在、無(wú)所不能嗎?

神學(xué)校里出了“叛逆”的學(xué)生,這還了得?小歐拉由于整天在思考這些問(wèn)題,因而聽課不專心,考試答非所問(wèn),終于有一天,老歐拉被叫到神學(xué)校,領(lǐng)回了被學(xué)校開除的兒子。

不滿10歲的小歐拉對(duì)神學(xué)本來(lái)就不感興趣,因此,他對(duì)于被神學(xué)校除名這件事無(wú)絲毫傷心,反而更加輕松活躍。從此,他可以無(wú)拘無(wú)束地思考他感興趣的問(wèn)題。

小歐拉立志要數(shù)清天上的星星。為此,他開始學(xué)習(xí)數(shù)學(xué)。一踏入這塊領(lǐng)域,小歐拉不禁呆住了:天地之中無(wú)所不寓的數(shù)學(xué),正像風(fēng)光迷人的山水景色,何等引人入勝!小歐拉抱著厚厚的數(shù)學(xué)書籍,寫呀,算呀,讀得是那樣的津津有味。

父親對(duì)兒子在神學(xué)校的表現(xiàn)很有些傷心,但當(dāng)他看到小歐拉是那樣的無(wú)憂無(wú)慮,又癡迷于數(shù)學(xué)時(shí),也只有聽之任之了。

老歐拉在傳教布道之余,還要放牧羊群以貼補(bǔ)家用。這天,為擴(kuò)大羊圈,父子倆正在丈量土地:小歐拉拉住測(cè)繩的一端,父親拉直測(cè)繩后從另一端讀出數(shù)值,根據(jù)量得的長(zhǎng)度計(jì)算場(chǎng)地面積和所用的籬笆材料。父親剛把四根轉(zhuǎn)角樁打入地下,小歐拉的“報(bào)告”也出來(lái)了:“羊圈長(zhǎng)40尺、寬15尺,面積600平方尺,需用110尺籬笆材料。”“可我們只有100尺材料!按長(zhǎng)40尺,寬10尺計(jì)算,只得400平方尺的羊圈,怎么辦?”父親給兒子出了一個(gè)難題。

“如果把這四根木樁適當(dāng)?shù)嘏惨慌参恢茫苍S用同樣多的籬笆,還能使羊圈面積擴(kuò)大。但什么情況下面積最大呢?”小歐拉啟動(dòng)腦筋,為自己的家庭解決問(wèn)題。

次日天剛亮,小歐拉晃醒了睡夢(mèng)中的父親:“只要把羊圈的長(zhǎng)、寬都定為25尺,那么,用100尺材料就可圍成625平方尺的羊圈了!”老歐拉噴噴稱贊:這雖然是數(shù)學(xué)上一個(gè)簡(jiǎn)單的極質(zhì)問(wèn)題,但小歐拉才十幾歲啊!這消息不脛而走,也傳進(jìn)當(dāng)?shù)財(cái)?shù)學(xué)名流伯努利的耳朵里。

伯努利的惜才、愛才是著名的。這次,他專門來(lái)到歐拉家中。小歐拉放下手中的書本,雙眼盯著這位德高望重的教授,質(zhì)詢似地問(wèn)道:

“您知道天上的星星有多少顆嗎?”伯努利第一次經(jīng)歷這種面對(duì)面的“挑戰(zhàn)”場(chǎng)面,他呆住了,問(wèn)道:“那么,你知道了?”小歐拉搖搖頭,同時(shí)對(duì)這位不作正面回答的教授投去失望的目光。

“你還知道些什么妮?”教授又問(wèn)道。

“我知道:6可分解成1,2,3,6,把1,2,3加起來(lái)等于6;28可分解成1,2,4,7,14,28,把1,2,4,7,14加起來(lái)等于28。是不是還有類似的數(shù)呢?”小歐拉比比劃劃,十分活躍。顯然,他希望對(duì)方給予滿意的解答。

這是“完全數(shù)”,一個(gè)古老的數(shù)學(xué)之謎,迄今尚無(wú)人知曉其全部奧秘。一個(gè)小孩子能提出這種有份量的問(wèn)題,使得這位蜚聲全歐的教授滿心歡喜。于是,在教授的極力推薦下,這位被神學(xué)校開除的學(xué)生、年方13歲的小歐拉,終于跨進(jìn)了巴塞爾大學(xué)的校門。

輝煌的一生

在巴塞爾大學(xué),歐拉涉獵了數(shù)學(xué)的大部分領(lǐng)域。老師們很快地發(fā)現(xiàn),課堂上講授的內(nèi)容和進(jìn)度遠(yuǎn)遠(yuǎn)不能滿足歐拉的需求。貝努利聽說(shuō)后,更是驚喜萬(wàn)分,他當(dāng)即決定從自己有限的寶貴時(shí)間中專門擠出一部分為歐拉輔導(dǎo),于是便有了極不平常的“歐拉學(xué)習(xí)日”。貝努利以其豐富的閱歷和對(duì)數(shù)學(xué)發(fā)展?fàn)顩r的深刻了解,給歐拉重要的指導(dǎo),使年輕的歐拉很快地進(jìn)入前沿領(lǐng)域。歐拉從此走上了獻(xiàn)身數(shù)學(xué)的道路。

歐拉卒于1783年?v觀其一生的研究歷程,我們會(huì)發(fā)現(xiàn),他雖然沒有像笛卡爾、牛頓那樣為數(shù)學(xué)開辟撼人心靈的新分支,但“沒有一個(gè)人像他那樣多產(chǎn),像他那樣巧妙地把握數(shù)學(xué);也沒有人能收集和利用代數(shù)、幾何、分析的手段去產(chǎn)生那么多令人欽佩的結(jié)果。”歐拉為數(shù)學(xué)譜寫了一首首精彩的詩(shī)篇!

歐拉關(guān)于微積分方面的論述構(gòu)成了18世紀(jì)微積分的主要內(nèi)容。他澄清了函數(shù)的概念及對(duì)各種新函數(shù)的認(rèn)識(shí),對(duì)全體初等函數(shù)連同它們的微分、積分進(jìn)行了系統(tǒng)的研究和分類,標(biāo)志著微積分從幾何學(xué)的束縛中徹底解放,從此成為一種形式化的函數(shù)理論;給出了多元函數(shù)的定義及偏導(dǎo)數(shù)的運(yùn)算性質(zhì),研究了二階混合偏導(dǎo)數(shù)相等、用累次積分計(jì)算二重積分等問(wèn)題,初步建立起多元函數(shù)的微積分理論;考察了微積分的嚴(yán)密性,使微積分脫離幾何而建立在代數(shù)的基礎(chǔ)上;還有無(wú)窮級(jí)數(shù)的專門研究等。正如貝努利所言,是歐拉將微積分“帶大成人!

歐拉在微分方程、變分法方面也有出色成就。歐拉深入考慮了在常微分方程中占有重要地位的方程及一般常系數(shù)線性微分方程的求解方法,開創(chuàng)了這類方程的現(xiàn)代解法,極大地豐富了誕生不久的微分方程理論;歐拉研究了微分方程的冪級(jí)數(shù)解法,從而解決了一大批不能用通常積分求解的微分方程;歐拉導(dǎo)出了一維、二維和三維的波動(dòng)方程,并對(duì)平面波、柱面波和球面波等各類偏微分方程的解作了分類和研究;歐拉在變分法方面的成果,也標(biāo)志了變分法作為一個(gè)新的數(shù)學(xué)分支的誕生,為日后的發(fā)展奠定了重要的基礎(chǔ)。

在數(shù)論研究方面,歐拉的工作也具有舉足輕重的地位。在費(fèi)馬開辟的道路上,歐拉幾乎走完了它的全程,其中最富于首創(chuàng)精神、并能引出最多成果的發(fā)現(xiàn)要數(shù)二次互反律了。歐拉對(duì)二次互反律進(jìn)行了深入的探討并作出清楚的敘述,這已成為近代數(shù)論的重要內(nèi)容。

歐拉在初等數(shù)學(xué)領(lǐng)域也花費(fèi)了不少心血。《無(wú)窮小分析引論》是數(shù)學(xué)史上第一本溝通微積分與初等數(shù)學(xué)的杰作,被看作現(xiàn)代意義下的第一本解析幾何教程;《對(duì)代數(shù)的完整介紹》系統(tǒng)總結(jié)了16世紀(jì)中期開始發(fā)展的代數(shù)學(xué)理論,它的出版標(biāo)志了初等代數(shù)發(fā)展史的基本結(jié)束。


本文來(lái)自:逍遙右腦記憶 http://m.yy-art.cn/gaozhong/669854.html

相關(guān)閱讀:高考理科數(shù)學(xué)選擇題怎么蒙 高考理科數(shù)學(xué)選擇題蒙題技巧