1.函數(shù)思想:把某變化過程中的一些相互制約的變量用函數(shù)關(guān)系表達出來,并研究這些量間的相互制約關(guān)系,最后解決問題,這就是函數(shù)思想;
2.應(yīng)用函數(shù)思想解題,確立變量之間的函數(shù)關(guān)系是一關(guān)鍵步驟,大體可分為下面兩個步驟:(1)有題目意思建立變量之間的函數(shù)關(guān)系式,把問題轉(zhuǎn)化為相應(yīng)的函數(shù)問題;
。2)根據(jù)需要構(gòu)造函數(shù),利用函數(shù)的相關(guān)知識解決問題;
。3)方程思想:在某變化過程中,往往需要根據(jù)一些要求,確定某些變量的值,這時常常列出這些變量的方程或(方程組),通過解方程(或方程組)求出它們,這就是方程思想;
3.函數(shù)與方程是兩個有著密切聯(lián)系的數(shù)學(xué)概念,它們之間相互滲透,很多方程的問題需要用函數(shù)的知識和方法解決,很多函數(shù)的問題也需要用方程的方法的支援,函數(shù)與方程之間的辯證關(guān)系,形成了函數(shù)方程思想。
本文來自:逍遙右腦記憶 http://m.yy-art.cn/gaozhong/450710.html
相關(guān)閱讀:高中數(shù)學(xué)教學(xué)中學(xué)生思維能力的培養(yǎng)