這里我們講一下數(shù)學學習的方法。這是我們應用國外的快速學習方法,根據(jù)數(shù)學學科特點提出來的。由于代數(shù)學習法和幾何學習法的不同,我們分別進行討論。
一、代數(shù)學習法
1.抄標題,瀏覽定目標。 2.閱讀并記錄重點內(nèi)容。
3.試作例題。 4.快做練習,歸納題型。 5.回憶小結
二、幾何學習四大步
1.①書寫標題,瀏覽教材; ②自我講授,寫出目錄
2.①按目錄,讀教材; ②自我講授幾何概念及定理
3.①閱讀例題,形成思路; ②寫出解答例題過程
4.①快做練習; ②小結解題方法。
三.數(shù)學概念學習方法
數(shù)學中有許多概念,如何讓學生正確地掌握概念,應該指明學習概念需要怎樣的一個過程,應達到什么程度。數(shù)學概念是反映數(shù)學對象本質(zhì)屬性的思維形式,它的定義方式有描述性的,指明外種延的,有種概念加類差等方式。一個數(shù)學概念需要記住名稱,敘述出本質(zhì)屬性,體會出所涉及的范圍,并應用概念準確進行判斷。這些問題老師沒有要求,不給出學習方法,學生將很難有規(guī)律地進行學習。
下面我們歸納出數(shù)學概念的學習方法:
1.閱讀概念,記住名稱或符號。 2.背誦定義,掌握特性。
3.舉出正反實例,體會概念反映的范圍。 4.進行練習,準確地判斷。
四、學公式的學習方法
公式具有抽象性,公式中的字母代表一定范圍內(nèi)的無窮多個數(shù)。有的學生在學習公式時,可以在短時間內(nèi)掌握,而有的學生卻要反來復去地體會,才能跳出千變?nèi)f化的數(shù)字關系的泥堆里。教師應明確告訴學生學習公式過程需要的步驟,使學生能夠迅速順利地掌握公式。
我們介紹的數(shù)學公式的學習方法是:
1.書寫公式,記住公式中字母間的關系。
2.懂得公式的來龍去脈,掌握推導過程。
3.用數(shù)字驗算公式,在公式具體化過程中體會公式中反映的規(guī)律。
4.將公式進行各種變換,了解其不同的變化形式。
5.將公式中的字母想象成抽象的框架,達到自如地應用公式。
五、數(shù)學定理的學習方法
一個定理包含條件和結論兩部分,定理必須進行證明,證明過程是連接條件和結論的橋梁,而學習定理是為了更好地應用它解決各種問題。
下面我們歸納出數(shù)學定理的學習方法:
1.背誦定理。 2.分清定理的條件和結論。
3.理解定理的證明過程。 4.應用定理證明有關問題。
5.體會定理與有關定理和概念的內(nèi)在關系。
有的定理包含公式,如韋達定理、勾股定理、正弦定理,它們的學習還應該同數(shù)公式的學習方法結合起來進行。
六、初學幾何證明的學習方法
在初一第二學期,初二、高一立體幾何學習的開始,學生總感到難以入門,以下的方法是許多老教師十分認同的,無論是上課還是自學,均可以開展。
1.看題畫圖。(看,寫) 2.審題找思路(聽老師講解)
3.閱讀書中證明過程。 4.回憶并書寫證明過程。
七.提高幾何證明能力的化歸法
在掌握了幾何證明的基本知識和方法以后,在能夠較順利和準確地表述證明過程的基礎上,如何提高幾何證明能力?這就需要積累各種幾何題型的證明思路,需要懂得若干證明技巧。這樣我們可以通過老師集中講解,或者通過集中閱讀若干幾何證明題,而達到上述目的。
化歸法是將未知化歸為已知的方法,當我們遇到一個新的幾何證明題時,我們需要注意其題型,找到關鍵步驟,將它化歸為已知題型時就可結束。此時最重要的是記住化歸步驟及證題思路即可,不再重視祥細的表述過程。
提高幾何證明能力的化歸法:
1.審題,弄清已知條件和求證結論。
2.畫圖,作輔助線,尋找證題途徑。
3.總結證明思路,使證題過程在大腦中形成清淅的印象。
八、波利亞解題思考方法
1.預見法
①收集資料,進行組織。 ②辨認與回憶,充實與重新安排。
③分離與組合。 ④回顧
2.解答問題法
①弄清問題。 ②擬定問題。
③實現(xiàn)計劃。 ④回顧。
3.解題過程自問法
① 我選擇的是怎樣的一條解題途徑。 ② 我為什么作出這樣的選擇?
③ 我現(xiàn)在已進行到了哪一階段? ④ 這一步的實施在整個解題過程中具有怎樣的地位?
⑤ 我目前所面臨的主要困難是什么? ⑥ 解題的前景如何?
九、數(shù)學學習的基本思維方法
1.觀察與實驗 2.分析與綜合 3.抽象與概括
4.比較與分類 5.一般化與特殊化 6.類比聯(lián)想與歸納猜想
十、理解、鞏固、應用、系統(tǒng)化四步學習法
1.理 解:內(nèi)容,標志,階段,過程。
2.鞏 固:透徹理解,牢固記憶,多方聯(lián)想,合理復習。
3.應 用:理論,實踐,具體,綜合。
4.系統(tǒng)化:①明確系統(tǒng)內(nèi)部各要素的屬性。 ②使各要素之間形成多方的聯(lián)系。
③概括各要素的各種屬性,形成整體性。 ④同化于原知識系統(tǒng)之中。
本文來自:逍遙右腦記憶 http://m.yy-art.cn/chuzhong/9227.html
相關閱讀: