初一學生數學解題錯誤的原因

編輯: 逍遙路 關鍵詞: 初中數學 來源: 高中學習網

  學生順利正確地完成解題,表明其在分析問題,提取、運用相應知識的環(huán)節(jié)上沒有受到干擾或者說克服了干擾。在上述環(huán)節(jié)上不能排除干擾,就會出現(xiàn)解題錯誤。就初中學生解題錯誤而言,造成錯誤的干擾來自以下兩方面:一是小學數學的干擾,二是初中數學前后知識的干擾。

  (一)小學數學的干擾

  在初中一開始,學生學習小學數學形成的某些認識會妨礙他們學習代數初步知識,使其產生解題錯誤。

  例如,在小學數學中,解題結果常常是一個確定的數。受此影響,學生在解答下述問題時出現(xiàn)混亂與錯誤。原題是這樣的:禮堂第一排有a個座位,后面每排都比前1排多1個座位,第2排有幾個座位?第3排呢?設m為第n排的座位數,那么m是多少?求a=20,n=19時,m的值。學生在解答上述問題時,受結果是確定的數的影響,把用n表示m與求m的值混為一談,暴露出其思考過程受到上述干擾的痕跡。

  又如,小學數學中形成的一些結論都只是在沒有學負數的情況下成立的。在小學,學生對數之和不小于其中任何一個加數,即a+b≥a是堅信不疑的,但是,學了負數后,a+b<a也是可能的。也就是說,習慣于在非負數范圍內討論問題,容易忽視字母取負數的情況,導致解題錯誤。另外,“+”、“-”號長期作為加、減號使用,學生對于3-5+4-6,習慣上看作3減5加4減6,而初中更需要把上式看成正3負5正4負6之和。對習慣看法的印象越牢固,新的看法就越難牢固樹立。

  再有,學生習慣于算術解法解應用題,這會對學生學習代數方法列方程解應用題產生干擾。例如,在求兩車相遇時間時(甲、乙兩站間的路程為360km,一列慢車從甲站開出,每小時行駛48km,一列快車從乙站開出,每小時行駛72km,兩列火車同時開出,相向而行,經過多少小時相遇?),列出的“方程”為x=360/48+72。由此可以看出學生拘泥于算術解法的痕跡。而初中需要列出48x+72x=360這樣的方程,這表明學生對已知數和未知數之間的相等關系的把握程度。

  總之,初中開始階段,學生解題錯誤的原因?勺匪莸叫W數學知識對其新學知識的影響。講清新學知識的意義(如用字母表示數)、范圍(正數、0、負數)、方法(代數和、代數方法)與舊有知識(具體數字、非負數、加減運算、算術方法)的不同,有助于克服干擾,減少初始階段的錯誤。

  (二)初中數學前后知識的干擾

  隨著初中知識的展開,初中數學知識本身也會前后相互干擾。

  例如,在學有理數的減法時,教師反復強調減去一個數等于加上它的相反數,因而3-7中7前面的符號“-”是減號給學生留下了深刻的印象。緊接著學習代數和,又要強調把3-7看成正3與負7之和,“-”又成了負號。學生不禁產生到底要把“-”看成減號還是負號的困惑。這個困惑不能很好地消除,學生就會產生運算錯誤。

  又如,了解不等式的解集以及運用不等式基本性質3是不等式教學的一個難點,學生常常在這里犯錯誤,其原因就有受等式兩邊可以乘以或除以任何一個數以及方程的解是一個數有關。事實也證明,把不等式的有關內容與等式及方程的相應內容加以比較,使學生理解兩者的異同,有助于學生學好不等式的內容。

  學生在解決單一問題與綜合問題時的表現(xiàn)也可以說明這個問題。學生在解答單一問題時,需要提取、運用的知識少,因而受到知識間的干擾小,產生錯誤的可能性。欢龅骄C合問題,在知識的選取、運用上受到的干擾大,容易出錯。

  總之,這種知識的前后干擾,常常使學生在學習新知識時出現(xiàn)困惑,在解題時選錯或用錯知識,導致錯誤的發(fā)生。


本文來自:逍遙右腦記憶 http://m.yy-art.cn/chuzhong/58234.html

相關閱讀:這個暑假學生要做什么?家長該做哪些準備?