2015中考數(shù)學(xué)真題分類匯編:圓(8)
一.解答題(共30小題)
1.(2015•大連)如圖,AB是⊙O的直徑,點C,D在⊙O上,且AD平分∠CAB,過點D作AC的垂線,與AC的延長線相交于點E,與AB的延長線相交于點F.
(1)求證:EF與⊙O相切;
(2)若AB=6,AD=4 ,求EF的長.
2.(2015•濰坊)如圖,在△ABC中,AB=AC,以AC為直徑的⊙O交BC于點D,交AB于點E,過點D作DF⊥AB,垂足為F,連接DE.
(1)求證:直線DF與⊙O相切;
(2)若AE=7,BC=6,求AC的長.
3.(2015•棗莊)如圖,在△ABC中,∠ABC=90°,以AB的中點O為圓心、OA為半徑的圓交AC于點D,E是BC的中點,連接DE,OE.
(1)判斷DE與⊙O的位置關(guān)系,并說明理由;
(2)求證:BC2=CD•2OE;
(3)若cos∠BAD= ,BE=6,求OE的長.
4.(2015•西寧)如圖,已知BC為⊙O的直徑,BA平分∠FBC交⊙O于點A,D是射線BF上的一點,且滿足 = ,過點O作OM⊥AC于點E,交⊙O于點M,連接BM,AM.
(1)求證:AD是⊙O的切線;
(2)若sin∠ABM= ,AM=6,求⊙O的半徑.
5.(2015•廣元)如圖,AB是⊙O的弦,D為半徑OA的中點,過D作CD⊥OA交弦于點E,交⊙O于點F,且CE=CB.
(1)求證:BC是⊙O的切線;
(2)連接AF、BF,求∠ABF的度數(shù);
(3)如果CD=15,BE=10,sinA= ,求⊙O的半徑.
6.(2015•北海)如圖,AB、CD為⊙O的直徑,弦AE∥CD,連接BE交CD于點F,過點E作直線EP與CD的延長線交于點P,使∠PED=∠C.
(1)求證:PE是⊙O的切線;
(2)求證:ED平分∠BEP;
(3)若⊙O的半徑為5,CF=2EF,求PD的長.
7.(2015•莆田)如圖,在四邊形ABCD中,AB=AD,對角線AC,BD交于點E,點O在線段AE上,⊙O過B,D兩點,若OC=5,OB=3,且cos∠BOE= .求證:CB是⊙O的切線.
8.(2015•錦州)如圖,△ABC中,以AC為直徑的⊙O與邊AB交于點D,點E為⊙O上一點,連接CE并延長交AB于點F,連接ED.
(1)若∠B+∠FED=90°,求證:BC是⊙O的切線;
(2)若FC=6,DE=3,F(xiàn)D=2,求⊙O的直徑.
9.(2015•甘孜州)如圖,△ABC為等邊三角形,以邊BC為直徑的半圓與邊AB,AC分別交于D,F(xiàn)兩點,過點D作DE⊥AC,垂足為點E.
(1)判斷DF與⊙O的位置關(guān)系,并證明你的結(jié)論;
(2)過點F作FH⊥BC,垂足為點H,若AB=4,求FH的長(結(jié)果保留根號).
10.(2015•包頭)如圖,AB是⊙O的直徑,點D是 上一點,且∠BDE=∠CBE,BD與AE交于點F.
(1)求證:BC是⊙O的切線;
(2)若BD平分∠ABE,求證:DE2=DF•DB;
(3)在(2)的條件下,延長ED,BA交于點P,若PA=AO,DE=2,求PD的長和⊙O的半徑.
11.(2015•本溪)如圖,點D是等邊△ABC中BC邊的延長線上一點,且AC=CD,以AB為直徑作⊙O,分別交邊AC、BC于點E、點F
(1)求證:AD是⊙O的切線;
(2)連接OC,交⊙O于點G,若AB=4,求線段CE、CG與 圍成的陰影部分的面積S.
12.(2015•常德)已知如圖,以Rt△ABC的AC邊為直徑作⊙O交斜邊AB于點E,連接EO并延長交BC的延長線于點D,點F為BC的中點,連接EF.
(1)求證:EF是⊙O的切線;
(2)若⊙O的半徑為3,∠EAC=60°,求AD的長.
13.(2015•武漢)如圖,AB是⊙O的直徑,∠ABT=45°,AT=AB.
(1)求證:AT是⊙O的切線;
(2)連接OT交⊙O于點C,連接AC,求tan∠TAC.
14.(2015•衡陽)如圖,AB是⊙O的直徑,點C、D為半圓O的三等分點,過點C作CE⊥AD,交AD的延長線于點E.
(1)求證:CE是⊙O的切線;
(2)判斷四邊形AOCD是否為菱形?并說明理由.
15.(2015•攀枝花)如圖,在⊙O中,AB為直徑,OC⊥AB,弦CD與OB交于點F,在AB的延長線上有點E,且EF=ED.
(1)求證:DE是⊙O的切線;
(2)若OF:OB=1:3,⊙O的半徑R=3,求 的值.
16.(2015•河池)如圖,AB為⊙O的直徑,CO⊥AB于O,D在⊙O上,連接BD,CD,延長CD與AB的延長線交于E,F(xiàn)在BE上,且FD=FE.
(1)求證:FD是⊙O的切線;
(2)若AF=8,tan∠BDF= ,求EF的長.
17.(2015•畢節(jié)市)如圖,以△ABC的BC邊上一點O為圓心的圓,經(jīng)過A,B兩點,且與BC邊交于點E,D為BE的下半圓弧的中點,連接AD交BC于F,AC=FC.
(1)求證:AC是⊙O的切線;
(2)已知圓的半徑R=5,EF=3,求DF的長.
18.(2015•鹽城)如圖,在△ABC中,∠CAB=90°,∠CBA=50°,以AB為直徑作⊙O交BC于點D,點E在邊AC上,且滿足ED=EA.
(1)求∠DOA的度數(shù);
(2)求證:直線ED與⊙O相切.
19.(2015•懷化)如圖,在Rt△ABC中,∠ACB=90°,E是BC的中點,以AC為直徑的⊙O與AB邊交于點D,連接DE
(1)求證:△ABC∽△CBD;
(2)求證:直線DE是⊙O的切線.
20.(2015•巴中)如圖,AB是⊙O的直徑,OD⊥弦BC于點F,交⊙O于點E,連結(jié)CE、AE、CD,若∠AEC=∠ODC.
(1)求證:直線CD為⊙O的切線;
(2)若AB=5,BC=4,求線段CD的長.
21.(2015•寧夏)如圖,AC是⊙O的直徑,BC是⊙O的弦,點P是⊙O外一點,連接PB、AB,∠PBA=∠C.
(1)求證:PB是⊙O的切線;
(2)連接OP,若OP∥BC,且OP=8,⊙O的半徑為2 ,求BC的長.
22.(2015•昆明)如圖,AH是⊙O的直徑,AE平分∠FAH,交⊙O于點E,過點E的直線FG⊥AF,垂足為F,B為直徑OH上一點,點E、F分別在矩形ABCD的邊BC和CD上.
(1)求證:直線FG是⊙O的切線;
(2)若CD=10,EB=5,求⊙O的直徑.
23.(2015•廈門)已知四邊形ABCD內(nèi)接于⊙O,∠ADC=90°,∠DCB<90°,對角線AC平分∠DCB,延長DA,CB相交于點E.
(1)如圖1,EB=AD,求證:△ABE是等腰直角三角形;
(2)如圖2,連接OE,過點E作直線EF,使得∠OEF=30°,當(dāng)∠ACE≥30°時,判斷直線EF與⊙O的位置關(guān)系,并說明理由.
24.(2015•福州)如圖,Rt△ABC中,∠C=90°,AC= ,tanB= ,半徑為2的⊙C,分別交AC,BC于點D,E,得到 .
(1)求證:AB為⊙C的切線;
(2)求圖中陰影部分的面積.
25.(2015•黃石)如圖,⊙O的直徑AB=4,∠ABC=30°,BC交⊙O于D,D是BC的中點.
(1)求BC的長;
(2)過點D作DE⊥AC,垂足為E,求證:直線DE是⊙O的切線.
26.(2015•營口)如圖,點P是⊙O外一點,PA切⊙O于點A,AB是⊙O的直徑,連接OP,過點B作BC∥OP交⊙O于點C,連接AC交OP于點D.
(1)求證:PC是⊙O的切線;
(2)若PD= cm,AC=8cm,求圖中陰影部分的面積;
(3)在(2)的條件下,若點E是 的中點,連接CE,求CE的長.
27.(2015•宜賓)如圖,CE是⊙O的直徑,BD切⊙O于點D,DE∥BO,CE的延長線交BD于點A.
(1)求證:直線BC是⊙O的切線;
(2)若AE=2,tan∠DEO= ,求AO的長.
28.(2015•隨州)如圖,射線PA切⊙O于點A,連接PO.
(1)在PO的上方作射線PC,使∠OPC=∠OPA(用尺規(guī)在原圖中作,保留痕跡,不寫作法),并證明:PC是⊙O的切線;
(2)在(1)的條件下,若PC切⊙O于點B,AB=AP=4,求 的長.
29.(2015•潛江)如圖,AC是⊙O的直徑,OB是⊙O的半徑,PA切⊙O于點A,PB與AC的延長線交于點M,∠COB=∠APB.
(1)求證:PB是⊙O的切線;
(2)當(dāng)OB=3,PA=6時,求MB,MC的長.
30.(2015•廣安)如圖,PB為⊙O的切線,B為切點,過B作OP的垂線BA,垂足為C,交⊙O于點A,連接PA、AO,并延長AO交⊙O于點E,與PB的延長線交于點D.
(1)求證:PA是⊙O的切線;
(2)若 = ,且OC=4,求PA的長和tanD的值.
2015中考數(shù)學(xué)真題分類匯編:圓(8)
參考答案與試題解析
一.解答題(共30小題)
1.(2015•大連)如圖,AB是⊙O的直徑,點C,D在⊙O上,且AD平分∠CAB,過點D作AC的垂線,與AC的延長線相交于點E,與AB的延長線相交于點F.
(1)求證:EF與⊙O相切;
(2)若AB=6,AD=4 ,求EF的長.
考點: 切線的判定.
分析: (1)連接OD,由題可知,E已經(jīng)是圓上一點,欲證CD為切線,只需證明∠OED=90°即可.
(2)連接BD,作DG⊥AB于G,根據(jù)勾股定理求出BD,進(jìn)而根據(jù)勾股定理求得DG,根據(jù)角平分線性質(zhì)求得DE=DG= ,然后根據(jù)△ODF∽△AEF,得出比例式,即可求得EF的長.
解答: (1)證明:連接OD,
∵AD平分∠CAB,
∴∠OAD=∠EAD.
∵OE=OA,
∴∠ODA=∠OAD.
∴∠ODA=∠EAD.
∴OD∥AE.
∵∠ODF=∠AEF=90°且D在⊙O上,
∴EF與⊙O相切.
(2)連接BD,作DG⊥AB于G,
∵AB是⊙O的直徑,
∴∠ADB=90°,
∵AB=6,AD=4 ,
∴BD= =2,
∵OD=OB=3,
設(shè)OG=x,則BG=3?x,
∵OD2?OG2=BD2?BG2,即32?x2=22?(3?x)2,
解得x= ,
∴OG= ,
∴DG= = ,
∵AD平分∠CAB,AE⊥DE,DG⊥AB,
∴DE=DG= ,
∴AE= = ,
∵OD∥AE,
∴△ODF∽△AEF,
∴ = ,即 = ,
∴ = ,
∴EF= .
點評: 本題考查了相似三角形的性質(zhì)和判定,勾股定理,切線的判定等知識點的應(yīng)用,主要考查學(xué)生運用性質(zhì)進(jìn)行推理和計算的能力,兩小題題型都很好,都具有一定的代表性.
2.(2015•濰坊)如圖,在△ABC中,AB=AC,以AC為直徑的⊙O交BC于點D,交AB于點E,過點D作DF⊥AB,垂足為F,連接DE.
(1)求證:直線DF與⊙O相切;
(2)若AE=7,BC=6,求AC的長.
考點: 切線的判定;相似三角形的判定與性質(zhì).
分析: (1)連接OD,利用AB=AC,OD=OC,證得OD∥AD,易證DF⊥OD,故DF為⊙O的切線;
(2)證得△BED∽△BCA,求得BE,利用AC=AB=AE+BE求得答案即可.
解答: (1)證明:如圖,
連接OD.
∵AB=AC,
∴∠B=∠C,
∵OD=OC,
∴∠ODC=∠C,
∴∠ODC=∠B,
∴OD∥AB,
∵DF⊥AB,
∴OD⊥DF,
∵點D在⊙O上,
∴直線DF與⊙O相切;
(2)解:∵四邊形ACDE是⊙O的內(nèi)接四邊形,
∴∠AED+∠ACD=180°,
∵∠AED+∠BED=180°,
∴∠BED=∠ACD,
∵∠B=∠B,
∴△BED∽△BCA,
∴ = ,
∵OD∥AB,AO=CO,
∴BD=CD= BC=3,
又∵AE=7,
∴ = ,
∴BE=2,
∴AC=AB=AE+BE=7+2=9.
點評: 此題考查切線的判定,三角形相似的判定與性質(zhì),要證某線是圓的切線,已知此線過圓上某點,連接圓心和這點(即為半徑),再證垂直即可.
3.(2015•棗莊)如圖,在△ABC中,∠ABC=90°,以AB的中點O為圓心、OA為半徑的圓交AC于點D,E是BC的中點,連接DE,OE.
(1)判斷DE與⊙O的位置關(guān)系,并說明理由;
(2)求證:BC2=CD•2OE;
(3)若cos∠BAD= ,BE=6,求OE的長.
考點: 切線的判定;相似三角形的判定與性質(zhì).
分析: (1)連接OD,BD,由AB為圓O的直徑,得到∠ADB為直角,可得出三角形BCD為直角三角形,E為斜邊BC的中點,利用斜邊上的中線等于斜邊的一半,得到CE=DE,利用等邊對等角得到一對角相等,再由OA=OD,利用等邊對等角得到一對角相等,由直角三角形ABC中兩銳角互余,利用等角的余角相等得到∠ADO與∠CDE互余,可得出∠ODE為直角,即DE垂直于半徑OD,可得出DE為圓O的切線;
(2)證明OE是△ABC的中位線,則AC=2OE,然后證明△ABC∽△BDC,根據(jù)相似三角形的對應(yīng)邊的比相等,即可證得;
(3)在直角△ABC中,利用勾股定理求得AC的長,根據(jù)三角形中位線定理OE的長即可求得.
解答: (1)證明:連接OD,BD,
∵AB為圓O的直徑,
∴∠ADB=90°,
在Rt△BDC中,E為斜邊BC的中點,
∴CE=DE=BE= BC,
∴∠C=∠CDE,
∵OA=OD,
∴∠A=∠ADO,
∵∠ABC=90°,即∠C+∠A=90°,
∴∠ADO+∠CDE=90°,即∠ODE=90°,
∴DE⊥OD,又OD為圓的半徑,
∴DE為⊙O的切線;
(2)證明:∵E是BC的中點,O點是AB的中點,
∴OE是△ABC的中位線,
∴AC=2OE,
∵∠C=∠C,∠ABC=∠BDC,
∴△ABC∽△BDC,
∴ = ,即BC2=AC•CD.
∴BC2=2CD•OE;
(3)解:∵cos∠BAD= ,
∴sin∠BAC= = ,
又∵BE=6,E是BC的中點,即BC=12,
∴AC=15.
又∵AC=2OE,
∴OE= AC= .
點評: 本題考查了切線的判定,垂徑定理以及相似三角形的判定與性質(zhì)等知識點.要證某線是圓的切線,已知此線過圓上某點,連接圓心與這點(即為半徑),再證垂直即可.
4.(2015•西寧)如圖,已知BC為⊙O的直徑,BA平分∠FBC交⊙O于點A,D是射線BF上的一點,且滿足 = ,過點O作OM⊥AC于點E,交⊙O于點M,連接BM,AM.
(1)求證:AD是⊙O的切線;
(2)若sin∠ABM= ,AM=6,求⊙O的半徑.
考點: 切線的判定;相似三角形的判定與性質(zhì).
分析: (1)要證AD是⊙O的切線,連接OA,只證∠DAO=90°即可.
(2)連接CM,根據(jù)垂徑定理求得 = ,進(jìn)而求得∠ABM=∠CBM,AM=CM=6,從而得出sin∠CBM= ,在RT△BMC中,利用正弦函數(shù)即可求得直徑AB,進(jìn)而求得半徑.
解答: (1)證明:連接OA;
∵BC為⊙O的直徑,BA平分∠CBF,AD⊥BF,
∴∠ADB=∠BAC=90°,∠DBA=∠CBA;
∵∠OAC=∠OCA,
∴∠DAO=∠DAB+∠BAO=∠BAO+∠OAC=90°,
∴DA為⊙O的切線.
(2)解:連接CM,
∵OM⊥AC于點E,OM是半徑,
∴ = ,
∴∠ABM=∠CBM,AM=CM=6,
∴sin∠ABM=sin∠CBM= ,
∵BC為⊙O的直徑,
∴∠BMC=90°,
在RT△BMC中,sin∠CBM= ,
∴ = ,
∴BC=10,
∴⊙O的半徑為5.
點評: 本題考查了切線的判定.要證某線是圓的切線,已知此線過圓上某點,連接圓心與這點(即為半徑),再證垂直即可.同時考查了三角函數(shù)的知識.
5.(2015•廣元)如圖,AB是⊙O的弦,D為半徑OA的中點,過D作CD⊥OA交弦于點E,交⊙O于點F,且CE=CB.
(1)求證:BC是⊙O的切線;
(2)連接AF、BF,求∠ABF的度數(shù);
(3)如果CD=15,BE=10,sinA= ,求⊙O的半徑.
考點: 切線的判定;相似三角形的判定與性質(zhì).
分析: (1)連接OB,由圓的半徑相等和已知條件證明∠OBC=90°即可證明BC是⊙O的切線;
(2)連接OF,AF,BF,首先證明△OAF是等邊三角形,再利用圓周角定理:同弧所對的圓周角是所對圓心角的一半即可求出∠ABF的度數(shù);
(3)過點C作CG⊥BE于G,根據(jù)等腰三角形的性質(zhì)得到EG= BE=5,由于∠ADE=∠CGE=90°,∠AED=∠GEC,得到∠GCE=∠A,△ADE∽△CGE,于是得到sin∠ECG=sin∠A= ,在RtECG中求得CG= =12,根據(jù)三角形相似得到比例式 ,代入數(shù)據(jù)即可得到結(jié)果.
解答: (1)證明:連接OB
∵OB=OA,CE=CB,
∴∠A=∠OBA,∠CEB=∠ABC
又∵CD⊥OA
∴∠A+∠AED=∠A+∠CEB=90°
∴∠OBA+∠ABC=90°
∴OB⊥BC
∴BC是⊙O的切線.
(2)解:如圖1,連接OF,AF,BF,
∵DA=DO,CD⊥OA,
∴AF=OF,
∵OA=OF,
∴△OAF是等邊三角形,
∴∠AOF=60°
∴∠ABF= ∠AOF=30°;
(3)解:如圖2,過點C作CG⊥BE于G,
∵CE=CB,
∴EG= BE=5,
∵∠ADE=∠CGE=90°,∠AED=∠GEC,
∴∠GCE=∠A,
∴△ADE∽△CGE,
∴sin∠ECG=sin∠A= ,
在RtECG中,
∵CG= =12,
∵CD=15,CE=13,
∴DE=2,
∵△ADE∽△CGE,
∴ ,
∴AD= ,CG= ,
∴⊙O的半徑OA=2AD= .
點評: 本題考查了切線的判定和性質(zhì),等邊三角形的判定和性質(zhì)、圓周角定理等,熟練掌握性質(zhì)定理是解題的關(guān)鍵.
6.(2015•北海)如圖,AB、CD為⊙O的直徑,弦AE∥CD,連接BE交CD于點F,過點E作直線EP與CD的延長線交于點P,使∠PED=∠C.
(1)求證:PE是⊙O的切線;
(2)求證:ED平分∠BEP;
(3)若⊙O的半徑為5,CF=2EF,求PD的長.
考點: 切線的判定.
分析: (1)如圖,連接OE.欲證明PE是⊙O的切線,只需推知OE⊥PE即可;
(2)由圓周角定理得到∠AEB=∠CED=90°,根據(jù)“同角的余角相等”推知∠3=∠4,結(jié)合已知條件證得結(jié)論;
(3)設(shè)EF=x,則CF=2x,在RT△OEF中,根據(jù)勾股定理得出52=x2+(2x?5)2,求得EF=4,進(jìn)而求得BE=8,CF=8,在RT△AEB中,根據(jù)勾股定理求得AE=6,然后根據(jù)△AEB∽△EFP,得出 = ,求得PF= ,即可求得PD的長.
解答: (1)證明:如圖,連接OE.
∵CD是圓O的直徑,
∴∠CED=90°.
∵OC=OE,
∴∠1=∠2.
又∵∠PED=∠C,即∠PED=∠1,
∴∠PED=∠2,
∴∠PED+∠OED=∠2+∠OED=90°,即∠OEP=90°,
∴OE⊥EP,
又∵點E在圓上,
∴PE是⊙O的切線;
(2)證明:∵AB、CD為⊙O的直徑,
∴∠AEB=∠CED=90°,
∴∠3=∠4(同角的余角相等).
又∵∠PED=∠1,
∴∠PED=∠4,
即ED平分∠BEP;
(3)解:設(shè)EF=x,則CF=2x,
∵⊙O的半徑為5,
∴OF=2x?5,
在RT△OEF中,OE2=OF2+EF2,即52=x2+(2x?5)2,
解得x=4,
∴EF=4,
∴BE=2EF=8,CF=2EF=8,
∴DF=CD?CF=10?8=2,
∵AB為⊙O的直徑,
∴∠AEB=90°,
∵AB=10,BE=8,
∴AE=6,
∵∠BEP=∠A,∠EFP=∠AEB=90°,
∴△AEB∽△EFP,
∴ = ,即 = ,
∴PF= ,
∴PD=PF?DF= ?2= .
點評: 本題考查了切線的判定和性質(zhì),圓周角定理的應(yīng)用,勾股定理的應(yīng)用,三角形相似的判定和性質(zhì),熟練掌握性質(zhì)定理是解題的關(guān)鍵.
7.(2015•莆田)如圖,在四邊形ABCD中,AB=AD,對角線AC,BD交于點E,點O在線段AE上,⊙O過B,D兩點,若OC=5,OB=3,且cos∠BOE= .求證:CB是⊙O的切線.
考點: 切線的判定.
專題: 證明題.
分析: 連接OD,可得OB=OD,由AB=AD,得到AE垂直平分BD,在直角三角形BOE中,利用銳角三角函數(shù)定義求出OE的長,根據(jù)勾股定理求出BE的長,由OC?OE求出CE的長,再利用勾股定理求出BC的長,利用勾股定理逆定理判斷得到BC與OB垂直,即可確定出BC為圓O的切線.
解答: 證明:連接OD,可得OB=OD,
∵AB=AD,
∴AE垂直平分BD,
在Rt△BOE中,OB=3,cos∠BOE= ,
∴OE= ,
根據(jù)勾股定理得:BE= = ,CE=OC?OE= ,
在Rt△CEB中,BC= =4,
∵OB=3,BC=4,OC=5,
∴OB2+BC2=OC2,
∴∠OBC=90°,即BC⊥OB,
則BC為圓O的切線.
點評: 此題考查了切線的判定,勾股定理及逆定理,熟練掌握切線的判定方法是解本題的關(guān)鍵.
8.(2015•錦州)如圖,△ABC中,以AC為直徑的⊙O與邊AB交于點D,點E為⊙O上一點,連接CE并延長交AB于點F,連接ED.
(1)若∠B+∠FED=90°,求證:BC是⊙O的切線;
(2)若FC=6,DE=3,F(xiàn)D=2,求⊙O的直徑.
考點: 切線的判定.
分析: (1)利用圓內(nèi)接四邊形對角互補(bǔ)以及鄰補(bǔ)角的定義得出∠FED=∠A,進(jìn)而得出∠B+∠A=90°,求出答案;
(2)利用相似三角形的判定與性質(zhì)首先得出△FED∽△FAC,進(jìn)而求出即可.
解答: (1)證明:∵∠A+∠DEC=180°,∠FED+∠DEC=180°,
∴∠FED=∠A,
∵∠B+∠FED=90°,
∴∠B+∠A=90°,
∴∠BCA=90°,
∴BC是⊙O的切線;
(2)解:∵∠CFA=∠DFE,∠FED=∠A,
∴△FED∽△FAC,
∴ = ,
∴ = ,
解得:AC=9,即⊙O的直徑為9.
點評: 此題主要考查了相似三角形的判定與性質(zhì)以及切線的判定等知識,得出△FED∽△FAC是解題關(guān)鍵.
9.(2015•甘孜州)如圖,△ABC為等邊三角形,以邊BC為直徑的半圓與邊AB,AC分別交于D,F(xiàn)兩點,過點D作DE⊥AC,垂足為點E.
(1)判斷DF與⊙O的位置關(guān)系,并證明你的結(jié)論;
(2)過點F作FH⊥BC,垂足為點H,若AB=4,求FH的長(結(jié)果保留根號).
考點: 切線的判定.
分析: (1)連接OD,由等邊三角形的性質(zhì)得出AB=BC,∠B=∠C=60°,證出△OBD是等邊三角形,得出∠BOD=∠C,證出OD∥AC,得出DE⊥OD,即可得出結(jié)論;
(2)先證明△OCF是等邊三角形,得出CF=OC= BC= AB=2,再由三角函數(shù)即可求出FH.
解答: 解:(1)DE是⊙O的切線;理由如下:
連接OD,如圖1所示:
∵△ABC是等邊三角形,
∴AB=BC=AC,∠B=∠C=60°,
∵OB=OD,
∴△OBD是等邊三角形,
∴∠BOD=60°,
∴∠BOD=∠C,
∴OD∥AC,
∵DE⊥AC,
∴DE⊥OD,
∴DE是⊙O的切線;
(2)連接OF,如圖2所示:
∵OC=OF,∠C=60°,
∴△OCF是等邊三角形,
∴CF=OC= BC= AB=2,
∵FH⊥BC,
∴∠FHC=90°,
∴FH=CF•sin∠C=2× = .
點評: 本題考查了切線的判定、等邊三角形的性質(zhì)與判定、平行線的判定、三角函數(shù);熟練掌握等邊三角形的性質(zhì),并能進(jìn)行推理論證與計算是解決問題的關(guān)鍵.
10.(2015•包頭)如圖,AB是⊙O的直徑,點D是 上一點,且∠BDE=∠CBE,BD與AE交于點F.
(1)求證:BC是⊙O的切線;
(2)若BD平分∠ABE,求證:DE2=DF•DB;
(3)在(2)的條件下,延長ED,BA交于點P,若PA=AO,DE=2,求PD的長和⊙O的半徑.
考點: 切線的判定;相似三角形的判定與性質(zhì).
分析: (1)根據(jù)圓周角定理即可得出∠EAB+∠EBA=90°,再由已知得出∠ABE+∠CBE=90°,則CB⊥AB,從而證得BC是⊙O的切線;
(2)通過證得△DEF∽△DBE,得出相似三角形的對應(yīng)邊成比例即可證得結(jié)論.
(3)連接DA、DO,先證得OD∥BE,得出 = ,然后根據(jù)已知條件得出 = = = ,求得PD=4,通過證得△PDA∽△POD,得出 = ,設(shè)OA=x,則PA=x,PO=2x,得出 = ,解得OA=2 .
解答: (1)證明:∵AB是⊙O的直徑,
∴∠AEB=90°,
∴∠EAB+∠EBA=90°,
∵∠EDB=∠EAB,∠BDE=∠CBE,
∴∠EAB=∠CBE,
∴∠ABE+∠CBE=90°,
∴CB⊥AB,
∵AB是⊙O的直徑,
∴BC是⊙O的切線;
(2)證明:∵BD平分∠ABE,
∴∠ABD=∠DBE, = ,
∴∠DEA=∠DBE,
∵∠EDB=∠BDE,
∴△DEF∽△DBE,
∴ = ,
∴DE2=DF•DB;
(3)解:連接DA、DO,
∵OD=OB,
∴∠ODB=∠OBD,
∵∠EBD=∠OBD,
∴∠EBD=∠ODB,
∴OD∥BE,
∴ = ,
∵PA=AO,
∴PA=AO=OB,
∴ =
∴ = ,
∴ = ,
∵DE=2,
∴PD=4,
∵∠PDA+∠ADE=180°,∠ABE+∠ADE=180°,
∴∠PDA=∠ABE,
∵OD∥BE,
∴∠AOD=∠ABE,
∴∠PDA=∠AOD,
∵∠P=∠P,
∴△PDA∽△POD,
∴ = ,
設(shè)OA=x,
∴PA=x,PO=2x,
∴ = ,
∴2x2=16,x=2 ,
∴OA=2 .
點評: 本題考查了切線的判定,三角形相似的判定和性質(zhì);要證某線是圓的切線,已知此線過圓上某點,連接圓心與這點(即為半徑),再證垂直即可.
11.(2015•本溪)如圖,點D是等邊△ABC中BC邊的延長線上一點,且AC=CD,以AB為直徑作⊙O,分別交邊AC、BC于點E、點F
(1)求證:AD是⊙O的切線;
(2)連接OC,交⊙O于點G,若AB=4,求線段CE、CG與 圍成的陰影部分的面積S.
考點: 切線的判定;等邊三角形的判定與性質(zhì);扇形面積的計算.
分析: (1)求出∠DAC=30°,即可求出∠DAB=90°,根據(jù)切線的判定推出即可;
(2)連接OE,分別求出△AOE、△AOC,扇形OEG的面積,即可求出答案.
解答: (1)證明:∵△ABC為等邊三角形,
∴AC=BC,
又∵AC=CD,
∴AC=BC=CD,
∴△ABD為直角三角形,
∴AB⊥AD,
∵AB為直徑,
∴AD是⊙O的切線;
(2)解:連接OE,
∵OA=OE,∠BAC=60°,
∴△OAE是等邊三角形,
∴∠AOE=60°,
∵CB=BA,OA=OB,
∴CO⊥AB,
∴∠AOC=90°,
∴∠EOC=30°,
∵△ABC是邊長為4的等邊三角形,
∴AO=2,由勾股定理得:OC= =2 ,
同理等邊三角形AOE邊AO上高是 = ,
S陰影=S△AOC?S等邊△AOE?S扇形EOG= = .
點評: 本題考查了等邊三角形的性質(zhì)和判定,勾股定理,三角形面積,扇形的面積,切線的判定的應(yīng)用,能綜合運用定理進(jìn)行推理和計算是解此題的關(guān)鍵.
12.(2015•常德)已知如圖,以Rt△ABC的AC邊為直徑作⊙O交斜邊AB于點E,連接EO并延長交BC的延長線于點D,點F為BC的中點,連接EF.
(1)求證:EF是⊙O的切線;
(2)若⊙O的半徑為3,∠EAC=60°,求AD的長.
考點: 切線的判定.
分析: (1)連接FO,由F為BC的中點,AO=CO,得到OF∥AB,由于AC是⊙O的直徑,得出CE⊥AE,根據(jù)OF∥AB,得出OF⊥CE,于是得到OF所在直線垂直平分CE,推出FC=FE,OE=OC,再由∠ACB=90°,即可得到結(jié)論.
(2)證出△AOE是等邊三角形,得到∠EOA=60°,再由直角三角形的性質(zhì)即可得到結(jié)果.
解答: 證明:(1)如圖1,連接FO,
∵F為BC的中點,AO=CO,
∴OF∥AB,
∵AC是⊙O的直徑,
∴CE⊥AE,
∵OF∥AB,
∴OF⊥CE,
∴OF所在直線垂直平分CE,
∴FC=FE,OE=OC,
∴∠FEC=∠FCE,∠0EC=∠0CE,
∵∠ACB=90°,
即:∠0CE+∠FCE=90°,
∴∠0EC+∠FEC=90°,
即:∠FEO=90°,
∴FE為⊙O的切線;
(2)如圖2,∵⊙O的半徑為3,
∴AO=CO=EO=3,
∵∠EAC=60°,OA=OE,
∴∠EOA=60°,
∴∠COD=∠EOA=60°,
∵在Rt△OCD中,∠COD=60°,OC=3,
∴CD= ,
∵在Rt△ACD中,∠ACD=90°,
CD= ,AC=6,
∴AD= .
點評: 本題考查了切線的判定和性質(zhì),三角形的中位線的性質(zhì),勾股定理,線段垂直平分線的性質(zhì),直角三角形的性質(zhì),熟練掌握定理是解題的關(guān)鍵.
13.(2015•武漢)如圖,AB是⊙O的直徑,∠ABT=45°,AT=AB.
(1)求證:AT是⊙O的切線;
(2)連接OT交⊙O于點C,連接AC,求tan∠TAC.
考點: 切線的判定;解直角三角形.
分析: (1)根據(jù)等腰三角形的性質(zhì)求得∠TAB=90°,得出TA⊥AB,從而證得AT是⊙O的切線;
(2)作CD⊥AT于D,設(shè)OA=x,則AT=2x,根據(jù)勾股定理得出OT= x,TC=( ?1)x,由CD⊥AT,TA⊥AB得出CD∥AB,根據(jù)平行線分線段成比例定理得出 = = ,即 = = ,從而求得CD=(1? )x,AD=2x?2(1? )x= x,然后解正切函數(shù)即可求得.
解答: 解:(1)∵∠ABT=45°,AT=AB.
∴∠TAB=90°,
∴TA⊥AB,
∴AT是⊙O的切線;
(2)作CD⊥AT于D,
∵TA⊥AB,TA=AB=2OA,
設(shè)OA=x,則AT=2x,
∴OT= x,
∴TC=( ?1)x,
∵CD⊥AT,TA⊥AB
∴CD∥AB,
∴ = = ,即 = = ,
∴CD=(1? )x,TD=2(1? )x,
∴AD=2x?2(1? )x= x,
∴tan∠TAC= = = .
點評: 本題考查了切線的判定,勾股定理的應(yīng)用,平行線的判定和性質(zhì),解直角三角形等,作出輔助線構(gòu)建直角三角形是解題的關(guān)鍵.
14.(2015•衡陽)如圖,AB是⊙O的直徑,點C、D為半圓O的三等分點,過點C作CE⊥AD,交AD的延長線于點E.
(1)求證:CE是⊙O的切線;
(2)判斷四邊形AOCD是否為菱形?并說明理由.
考點: 切線的判定;菱形的判定.
分析: (1)連接AC,由題意得 = = ,∠DAC=∠CAB,即可證明AE∥OC,從而得出∠OCE=90°,即可證得結(jié)論;
(2)四邊形AOCD為菱形.由 = ,則∠DCA=∠CAB可證明四邊形AOCD是平行四邊形,再由OA=OC,即可證明平行四邊形AOCD是菱形(一組鄰邊相等的平行四邊形是菱形);
解答: 解:(1)連接AC,
∵點CD是半圓O的三等分點,
∴ = = ,
∴∠DAC=∠CAB,
∵OA=OC,
∴∠CAB=∠OCA,
∴∠DAC=∠OCA,
∴AE∥OC(內(nèi)錯角相等,兩直線平行)
∴∠OCE=∠E,
∵CE⊥AD,
∴∠OCE=90°,
∴OC⊥CE,
∴CE是⊙O的切線;
(2)四邊形AOCD為菱形.
理由是:
∵ = ,
∴∠DCA=∠CAB,
∴CD∥OA,
又∵AE∥OC,
∴四邊形AOCD是平行四邊形,
∵OA=OC,
∴平行四邊形AOCD是菱形.
點評: 本題考查了切線的判定、等腰三角形的性質(zhì)、平行線的判定和性質(zhì)、菱形的判定和性質(zhì),是中學(xué)階段的重點內(nèi)容.
15.(2015•攀枝花)如圖,在⊙O中,AB為直徑,OC⊥AB,弦CD與OB交于點F,在AB的延長線上有點E,且EF=ED.
(1)求證:DE是⊙O的切線;
(2)若OF:OB=1:3,⊙O的半徑R=3,求 的值.
考點: 切線的判定.
專題: 證明題.
分析: (1)連結(jié)OD,如圖,由EF=ED得到∠EFD=∠EDF,再利用對頂角相等得∠EFD=∠CFO,則∠CFO=∠EDF,由于∠OCF+∠CFO=90°,∠OCF=∠ODF,則∠ODC+∠EDF=90°,于是根據(jù)切線的判定定理可得DE是⊙O的切線;
(2)由OF:OB=1:3得到OF=1,BF=2,設(shè)BE=x,則DE=EF=x+2,根據(jù)圓周角定理,由AB為直徑得到∠ADB=90°,接著證明△EBD∽△EDA,利用相似比得 = = ,即 = = ,然后求出x的值后計算 的值.
解答: (1)證明:連結(jié)OD,如圖,
∵EF=ED,
∴∠EFD=∠EDF,
∵∠EFD=∠CFO,
∴∠CFO=∠EDF,
∵OC⊥OF,
∴∠OCF+∠CFO=90°,
而OC=OD,
∴∠OCF=∠ODF,
∴∠ODC+∠EDF=90°,即∠ODE=90°,
∴OD⊥DE,
∴DE是⊙O的切線;
(2)解:∵OF:OB=1:3,
∴OF=1,BF=2,
設(shè)BE=x,則DE=EF=x+2,
∵AB為直徑,
∴∠ADB=90°,
∴∠ADO=∠BDE,
而∠ADO=∠A,
∴∠BDE=∠A,
而∠BED=∠DAE,
∴△EBD∽△EDA,
∴ = = ,即 = = ,
∴x=2,
∴ = = .
點評: 本題考查了切線的判定定理:經(jīng)過半徑的外端且垂直于這條半徑的直線是圓的切線.要證某線是圓的切線,已知此線過圓上某點,連接圓心與這點(即為半徑),再證垂直即可.也考查了相似三角形的判定與性質(zhì).
16.(2015•河池)如圖,AB為⊙O的直徑,CO⊥AB于O,D在⊙O上,連接BD,CD,延長CD與AB的延長線交于E,F(xiàn)在BE上,且FD=FE.
(1)求證:FD是⊙O的切線;
(2)若AF=8,tan∠BDF= ,求EF的長.
考點: 切線的判定.
專題: 證明題.
分析: (1)連結(jié)OD,如圖,由CO⊥AB得∠E+∠C=90°,根據(jù)等腰三角形的性質(zhì)由FE=FD,OD=OC得到∠E=∠FDE,∠C=∠ODC,于是有∠FDE+∠ODC=90°,則可根據(jù)切線的判定定理得到FD是⊙O的切線;
(2)連結(jié)AD,如圖,利用圓周角定理,由AB為⊙O的直徑得到∠ADB=90°,則∠A+∠ABD=90°,加上∠OBD=∠ODB,∠BDF+∠ODB=90°,則∠A=∠BDF,易得△FBD∽△FDA,根據(jù)相似的性質(zhì)得 = ,
再在Rt△ABD中,根據(jù)正切的定義得到tan∠A=tan∠BDF= = ,于是可計算出DF=2,從而得到EF=2.
解答: (1)證明:連結(jié)OD,如圖,
∵CO⊥AB,
∴∠E+∠C=90°,
∵FE=FD,OD=OC,
∴∠E=∠FDE,∠C=∠ODC,
∴∠FDE+∠ODC=90°,
∴∠ODF=90°,
∴OD⊥DF,
∴FD是⊙O的切線;
(2)解:連結(jié)AD,如圖,
∵AB為⊙O的直徑,
∴∠ADB=90°,
∴∠A+∠ABD=90°,
∵OB=OD,
∴∠OBD=∠ODB,
∴∠A+∠ODB=90°,
∵∠BDF+∠ODB=90°,
∴∠A=∠BDF,
而∠DFB=∠AFD,
∴△FBD∽△FDA,
∴ = ,
在Rt△ABD中,tan∠A=tan∠BDF= = ,
∴ = ,
∴DF=2,
∴EF=2.
點評: 本題考查了切線的判定:經(jīng)過半徑的外端且垂直于這條半徑的直線是圓的切線.要證某線是圓的切線,已知此線過圓上某點,連接圓心與這點(即為半徑),再證垂直即可.也考查了相似三角形的判定與性質(zhì).
17.(2015•畢節(jié)市)如圖,以△ABC的BC邊上一點O為圓心的圓,經(jīng)過A,B兩點,且與BC邊交于點E,D為BE的下半圓弧的中點,連接AD交BC于F,AC=FC.
(1)求證:AC是⊙O的切線;
(2)已知圓的半徑R=5,EF=3,求DF的長.
考點: 切線的判定.
專題: 證明題.
分析: (1)連結(jié)OA、OD,如圖,根據(jù)垂徑定理的推理,由D為BE的下半圓弧的中點得到OD⊥BE,則∠D+∠DFO=90°,再由AC=FC得到∠CAF=∠CFA,根據(jù)對頂角相等得∠CFA=∠DFO,所以∠CAF=∠DFO,加上∠OAD=∠ODF,則∠OAD+∠CAF=90°,于是根據(jù)切線的判定定理即可得到AC是⊙O的切線;
(2)由于圓的半徑R=5,EF=3,則OF=2,然后在Rt△ODF中利用勾股定理計算DF的長.
解答: (1)證明:連結(jié)OA、OD,如圖,
∵D為BE的下半圓弧的中點,
∴OD⊥BE,
∴∠D+∠DFO=90°,
∵AC=FC,
∴∠CAF=∠CFA,
∵∠CFA=∠DFO,
∴∠CAF=∠DFO,
而OA=OD,
∴∠OAD=∠ODF,
∴∠OAD+∠CAF=90°,即∠OAC=90°,
∴OA⊥AC,
∴AC是⊙O的切線;
(2)解:∵圓的半徑R=5,EF=3,
∴OF=2,
在Rt△ODF中,∵OD=5,OF=2,
∴DF= = .
點評: 本題考查了切線的判定定理:經(jīng)過半徑的外端且垂直于這條半徑的直線是圓的切線.要證某線是圓的切線,已知此線過圓上某點,連接圓心與這點(即為半徑),再證垂直即可.也考查了勾股定理.
18.(2015•鹽城)如圖,在△ABC中,∠CAB=90°,∠CBA=50°,以AB為直徑作⊙O交BC于點D,點E在邊AC上,且滿足ED=EA.
(1)求∠DOA的度數(shù);
(2)求證:直線ED與⊙O相切.
考點: 切線的判定.
分析: (1)根據(jù)圓周角定理即可得到結(jié)論;
(2)連接OE,通過△EAO≌△EDO,即可得到∠EDO=90°,于是得到結(jié)論.
解答: (1)解;∵∠DBA=50°,
∴∠DOA=2∠DBA=100°,
(2)證明:連接OE.
在△EAO與△EDO中, ,
∴△EAO≌△EDO,
∴∠EDO=∠EAO,
∵∠BAC=90°,
∴∠EDO=90°,
∴DE與⊙O相切.
點評: 本題考查了切線的判定,全等三角形的判定和性質(zhì),連接OE構(gòu)造全等三角形是解題的關(guān)鍵.
19.(2015•懷化)如圖,在Rt△ABC中,∠ACB=90°,E是BC的中點,以AC為直徑的⊙O與AB邊交于點D,連接DE
(1)求證:△ABC∽△CBD;
(2)求證:直線DE是⊙O的切線.
考點: 切線的判定;相似三角形的判定與性質(zhì).
分析: (1)根據(jù)AC為⊙O的直徑,得出△BCD為Rt△,通過已知條件證明△BCD∽△BAC即可;
(2)連結(jié)DO,如圖,根據(jù)直角三角形斜邊上的中線性質(zhì),由∠BDC=90°,E為BC的中點得到DE=CE=BE,則利用等腰三角形的性質(zhì)得∠EDC=∠ECD,∠ODC=∠OCD,由于∠OCD+∠DCE=∠ACB=90°,所以∠EDC+∠ODC=90°,即∠EDO=90°,于是根據(jù)切線的判定定理即可得到DE與⊙O相切.
解答: (1)證明:∵AC為⊙O的直徑,
∴∠ADC=90°,
∴∠BDC=90°,
又∵∠ACB=90°,
∴∠ACB=∠BDC,
又∵∠B=∠B,
∴△BCD∽△BAC;
(2)連結(jié)DO,如圖,
∵∠BDC=90°,E為BC的中點,
∴DE=CE=BE,
∴∠EDC=∠ECD,
又∵OD=OC,
∴∠ODC=∠OCD,
而∠OCD+∠DCE=∠ACB=90°,
∴∠EDC+∠ODC=90°,即∠EDO=90°,
∴DE⊥OD,
∴DE與⊙O相切.
點評: 本題考查了切線的判定定理:經(jīng)過半徑的外端且垂直于這條半徑的直線是圓的切線.要證某線是圓的切線,已知此線過圓上某點,連接圓心與這點(即為半徑),再證垂直即可.也考查了直角三角形斜邊上的中線性質(zhì)和相似三角形的判定與性質(zhì).
20.(2015•巴中)如圖,AB是⊙O的直徑,OD⊥弦BC于點F,交⊙O于點E,連結(jié)CE、AE、CD,若∠AEC=∠ODC.
(1)求證:直線CD為⊙O的切線;
(2)若AB=5,BC=4,求線段CD的長.
考點: 切線的判定.
分析: (1)利用圓周角定理結(jié)合等腰三角形的性質(zhì)得出∠OCF+∠DCB=90°,即可得出答案;
(2)利用圓周角定理得出∠ACB=90°,利用相似三角形的判定與性質(zhì)得出DC的長.
解答: (1)證明:連接OC,
∵∠CEA=∠CBA,∠AEC=∠ODC,
∴∠CBA=∠ODC,
又∵∠CFD=∠BFO,
∴∠DCB=∠BOF,
∵CO=BO,
∴∠OCF=∠B,
∵∠B+∠BOF=90°,
∴∠OCF+∠DCB=90°,
∴直線CD為⊙O的切線;
(2)解:連接AC,
∵AB是⊙O的直徑,
∴∠ACB=90°,
∴∠DCO=∠ACB,
又∵∠D=∠B
∴△OCD∽△ACB,
∵∠ACB=90°,AB=5,BC=4,
∴AC=3,
∴ = ,
即 = ,
解得;DC= .
點評: 此題主要考查了切線的判定以及相似三角形的判定與性質(zhì),得出△OCD∽△ACB是解題關(guān)鍵.
21.(2015•寧夏)如圖,AC是⊙O的直徑,BC是⊙O的弦,點P是⊙O外一點,連接PB、AB,∠PBA=∠C.
(1)求證:PB是⊙O的切線;
(2)連接OP,若OP∥BC,且OP=8,⊙O的半徑為2 ,求BC的長.
考點: 切線的判定.
分析: 連接OB,由圓周角定理得出∠ABC=90°,得出∠C+∠BAC=90°,再由OA=OB,得出∠BAC=∠OBA,證出∠PBA+∠OBA=90°,即可得出結(jié)論;
(2)證明△ABC∽△PBO,得出對應(yīng)邊成比例,即可求出BC的長.
解答: (1)證明:連接OB,如圖所示:
∵AC是⊙O的直徑,
∴∠ABC=90°,
∴∠C+∠BAC=90°,
∵OA=OB,
∴∠BAC=∠OBA,
∵∠PBA=∠C,
∴∠PBA+∠OBA=90°,
即PB⊥OB,
∴PB是⊙O的切線;
(2)解:∵⊙O的半徑為2 ,
∴OB=2 ,AC=4 ,
∵OP∥BC,
∴∠C=∠BOP,
又∵∠ABC=∠PBO=90°,
∴△ABC∽△PBO,
∴ ,
即 ,
∴BC=2.
點評: 本題考查了切線的判定、圓周角定理、平行線的性質(zhì)、相似三角形的判定與性質(zhì);熟練掌握圓周角定理、切線的判定是解決問題的關(guān)鍵.
22.(2015•昆明)如圖,AH是⊙O的直徑,AE平分∠FAH,交⊙O于點E,過點E的直線FG⊥AF,垂足為F,B為直徑OH上一點,點E、F分別在矩形ABCD的邊BC和CD上.
(1)求證:直線FG是⊙O的切線;
(2)若CD=10,EB=5,求⊙O的直徑.
考點: 切線的判定;相似三角形的判定與性質(zhì).
分析: (1)連接OE,證明FG是⊙O的切線,只要證明∠OEF=90°即可;
(2)設(shè)OA=OE=x,則OB=10?x,在Rt△OBE中,∠OBE=90°,BE=5,由勾股定理得:OB2+BE2=OE2,即(10?x)2+52=x2,求出x的值,即可解答.
解答: 解:(1)如圖1,連接OE,
∵OA=OE,
∴∠EAO=∠AEO,
∵AE平分∠FAH,
∴∠EAO=∠FAE,
∴∠FAE=∠AEO,
∴AF∥OE,
∴∠AFE+∠OEF=180°,
∵AF⊥GF,
∴∠AFE=∠OEF=90°,
∴OE⊥GF,
∵點E在圓上,OE是半徑,
∴GF是⊙O的切線.
(2)∵四邊形ABCD是矩形,CD=10,
∴AB=CD=10,∠ABE=90°,
設(shè)OA=OE=x,則OB=10?x,
在Rt△OBE中,∠OBE=90°,BE=5,
由勾股定理得:OB2+BE2=OE2,
∴(10?x)2+52=x2,
∴ ,
,
∴⊙O的直徑為 .
點評: 本題考查的是切線的判定,解決本題的關(guān)鍵是要證某線是圓的切線,已知此線過圓上某點,連接圓心和這點(即為半徑),再證垂直即可.
23.(2015•廈門)已知四邊形ABCD內(nèi)接于⊙O,∠ADC=90°,∠DCB<90°,對角線AC平分∠DCB,延長DA,CB相交于點E.
(1)如圖1,EB=AD,求證:△ABE是等腰直角三角形;
(2)如圖2,連接OE,過點E作直線EF,使得∠OEF=30°,當(dāng)∠ACE≥30°時,判斷直線EF與⊙O的位置關(guān)系,并說明理由.
考點: 切線的判定;等腰直角三角形.
專題: 證明題.
分析: (1)由∠ACD=∠ABC得到 = ,則AD=AB,加上EB=AD,則AB=EB,再根據(jù)圓內(nèi)接四邊形的性質(zhì)得∠EBA=∠ADC=90°,于是可判斷△ABE是等腰直角三角形
(2)由于∠ACD=∠ABC,∠ACE≥30°,則60°≤∠DCE<90°,根據(jù)三角形邊角關(guān)系得AE≥AC,而OE>AE,所以O(shè)E>AC,作OH⊥EF于H,如圖,根據(jù)含30度的直角三角形三邊的關(guān)系得OH= OE,所以O(shè)H>OA,則根據(jù)直線與圓的位置關(guān)系可判斷直線EF與⊙O相離.
解答: (1)證明:∵對角線AC平分∠DCB,
∴∠ACD=∠ABC,
∴ = ,
∴AD=AB,
∵EB=AD,
∴AB=EB,
∵∠EBA=∠ADC=90°,
∴△ABE是等腰直角三角形
(2)解:直線EF與⊙O相離.理由如下:
∵∠DCB<90°,∠ACD=∠ABC,
∵∠ACE≥30°,
∴60°≤∠DCE<90°,
∴∠AEC≤30°,
∴AE≥AC,
∵OE>AE,
∴OE>AC,
作OH⊥EF于H,如圖,
在Rt△OEH中,∵∠OEF=30°,
∴OH= OE,
∴OH>OA,
∴直線EF與⊙O相離.
點評: 本題考查了切線的判定:經(jīng)過半徑的外端且垂直于這條半徑的直線是圓的切線.要證某線是圓的切線,已知此線過圓上某點,連接圓心與這點(即為半徑),再證垂直即可.也考查了等腰直角三角形的性質(zhì)和直線與圓的位置關(guān)系.
24.(2015•福州)如圖,Rt△ABC中,∠C=90°,AC= ,tanB= ,半徑為2的⊙C,分別交AC,BC于點D,E,得到 .
(1)求證:AB為⊙C的切線;
(2)求圖中陰影部分的面積.
考點: 切線的判定;勾股定理;扇形面積的計算.
專題: 計算題.
分析: (1)過點C作CH⊥AB于H,如圖,先在Rt△ABC中,利用正切的定義計算出BC=2AC=2 ,再利用勾股定理計算出AB=5,接著利用面積法計算出CH=2,則可判斷CH為⊙C的半徑,然后根據(jù)切線的判定定理即可得到AB為⊙C的切線;
(2)根據(jù)三角形面積公式和扇形的面積公式,利用S陰影部分=S△ACB?S扇形CDE進(jìn)行計算即可.
解答: (1)證明:過點C作CH⊥AB于H,如圖,
在Rt△ABC中,∵tanB= = ,
∴BC=2AC=2 ,
∴AB= = =5,
∵ CH•AB= AC•BC,
∴CH= =2,
∵⊙C的半徑為2,
∴CH為⊙C的半徑,
而CH⊥AB,
∴AB為⊙C的切線;
(2)解:S陰影部分=S△ACB?S扇形CDE
= ×2×5?
=5?π.
點評: 本題考查了切線的判定:經(jīng)過半徑的外端且垂直于這條半徑的直線是圓的切線.在判定一條直線為圓的切線時,當(dāng)已知條件中未明確指出直線和圓是否有公共點時,常過圓心作該直線的垂線段,證明該線段的長等于半徑.也考查了勾股定理和扇形面積的計算.
25.(2015•黃石)如圖,⊙O的直徑AB=4,∠ABC=30°,BC交⊙O于D,D是BC的中點.
(1)求BC的長;
(2)過點D作DE⊥AC,垂足為E,求證:直線DE是⊙O的切線.
考點: 切線的判定;含30度角的直角三角形;圓周角定理.
分析: (1)根據(jù)圓周角定理求得∠ADB=90°,然后解直角三角形即可求得BD,進(jìn)而求得BC即可;
(2)要證明直線DE是⊙O的切線只要證明∠EDO=90°即可.
解答: 證明:(1)解:連接AD,
∵AB是⊙O的直徑,
∴∠ADB=90°,
又∵∠ABC=30°,AB=4,
∴BD=2 ,
∵D是BC的中點,
∴BC=2BD=4 ;
(2)證明:連接OD.
∵D是BC的中點,O是AB的中點,
∴DO是△ABC的中位線,
∴OD∥AC,則∠EDO=∠CED
又∵DE⊥AC,
∴∠CED=90°,∠EDO=∠CED=90°
∴DE是⊙O的切線.
點評: 此題主要考查了切線的判定以及含30°角的直角三角形的性質(zhì).解題時要注意連接過切點的半徑是圓中的常見輔助線.
26.(2015•營口)如圖,點P是⊙O外一點,PA切⊙O于點A,AB是⊙O的直徑,連接OP,過點B作BC∥OP交⊙O于點C,連接AC交OP于點D.
(1)求證:PC是⊙O的切線;
(2)若PD= cm,AC=8cm,求圖中陰影部分的面積;
(3)在(2)的條件下,若點E是 的中點,連接CE,求CE的長.
考點: 切線的判定;扇形面積的計算.
分析: (1)連接OC,證明△PAO≌△PCO,得到∠PCO=∠PAO=90°,證明結(jié)論;
(2)證明△ADP∽△PDA,得到成比例線段求出BC的長,根據(jù)S陰=S⊙O?S△ABC求出答案;
(3)連接AE、BE,作BM⊥CE于M,分別求出CM和EM的長,求和得到答案.
解答: (1)證明:如圖1,連接OC,
∵PA切⊙O于點A,∴∠PAO=90°,
∵BC∥OP,
∴∠AOP=∠OBC,∠COP=∠OCB,
∵OC=OB,∴∠OBC=∠OCB,
∴∠AOP=∠COP,
在△PAO和△PCO中,
,
∴△PAO≌△PCO,
∴∠PCO=∠PAO=90°,
∴PC是⊙O的切線;
(2)解:由(1)得PA,PC都為圓的切線,
∴PA=PC,OP平分∠APC,∠ADO=∠PAO=90°,
∴∠PAD+∠DAO=∠DAO+∠AOD,
∴∠PAD=∠AOD,
∴△ADP∽△PDA,
∴ ,
∴AD2=PD•DO,
∵AC=8,PD= ,
∴AD= AC=4,OD=3,AO=5,
由題意知OD為△的中位線,
∴BC=6,OD=6,AB=10.
∴S陰=S⊙O?S△ABC= ?24;
(3)解:如圖2,連接AE、BE,作BM⊥CE于M,
∴∠CMB=∠EMB=∠AEB=90°,
∵點E是 的中點,
∴∠ECB=∠CBM=∠ABE=45°,
CM=MB=3 ,
BE=AB•cos45°=5 ,
∴EM= =4 ,
則CE=CM+EM=7 .
點評: 本題考查的是切線的判定和性質(zhì)、扇形面積的計算和相似三角形的判定和性質(zhì),靈活運用切線的性質(zhì):圓的切線垂直于過切點的半徑和切線的判定是解題的關(guān)鍵.
27.(2015•宜賓)如圖,CE是⊙O的直徑,BD切⊙O于點D,DE∥BO,CE的延長線交BD于點A.
(1)求證:直線BC是⊙O的切線;
(2)若AE=2,tan∠DEO= ,求AO的長.
考點: 切線的判定與性質(zhì).
分析: (1)連接OD,由DE∥BO,得到∠1=∠4,∠2=∠3,通過△DOB≌△COB,得到∠OCB=∠ODB,問題得證;
(2)根據(jù)三角函數(shù)tan∠DEO=tan∠2= ,設(shè);OC=r,BC= r,得到BD=BC= r,由切割線定理得到AD=2 ,再根據(jù)平行線分線段成比例得到比例式即可求得結(jié)果.
解答: 解:(1)連接OD,
∵DE∥BO,
∴∠1=∠4,∠2=∠3,
∵OD=OE,
∴∠3=∠4,
∴∠1=∠2,
在△DOB與△COB中,
,
∴△DOB≌△COB,
∴∠OCB=∠ODB,
∵BD切⊙O于點D,
∴∠ODB=90°,
∴∠OCB=90°,
∴AC⊥BC,
∴直線BC是⊙O的切線;
(2)∵∠DEO=∠2,
∴tan∠DEO=tan∠2= ,
設(shè);OC=r,BC= r,
由(1)證得△DOB≌△COB,
∴BD=BC= r,
由切割線定理得:AD2=AE•AC=2(2+r),
∴AD=2 ,
∵DE∥BO,
∴ ,
∴ ,
∴r=1,
∴AO=3.
點評: 本題考查了切線的判定和性質(zhì),全等三角形的判定與性質(zhì).切割線定理,平行線分線段成比例,掌握定理是解題的關(guān)鍵.
28.(2015•隨州)如圖,射線PA切⊙O于點A,連接PO.
(1)在PO的上方作射線PC,使∠OPC=∠OPA(用尺規(guī)在原圖中作,保留痕跡,不寫作法),并證明:PC是⊙O的切線;
(2)在(1)的條件下,若PC切⊙O于點B,AB=AP=4,求 的長.
考點: 切線的判定與性質(zhì);弧長的計算;作圖—基本作圖.
分析: (1)按照作一個角等于已知角的作圖方法作圖即可,連接OA,作OB⊥PC,根據(jù)角平分線的性質(zhì)證明OA=OB即可證明PC是⊙O的切線;
(2)首先證明△PAB是等邊三角形,則∠APB=60°,進(jìn)而∠POA=60°,在Rt△AOP中求出OA,用弧長公式計算即可.
解答: 解:(1)作圖如右圖,
連接OA,過O作OB⊥PC,
∵PA切⊙O于點A,
∴OA⊥PA,
又∵∠OPC=∠OPA,OB⊥PC,
∴OA=OB,即d=r,
∴PC是⊙O的切線;
(2)∵PA、PC是⊙O的切線,
∴PA=PB,
又∵AB=AP=4,
∴△PAB是等邊三角形,
∴∠APB=60°,
∴∠AOB=120°,∠POA=60°,
在Rt△AOP中,tan60°=
∴OA=
∴ = = .
點評: 本題考查了尺規(guī)作圖、切線的判定與性質(zhì)、等邊三角形的判定與性質(zhì)、銳角三角函數(shù)以及弧長的計算,求出圓心角和半徑長是解決問題的關(guān)鍵.
29.(2015•潛江)如圖,AC是⊙O的直徑,OB是⊙O的半徑,PA切⊙O于點A,PB與AC的延長線交于點M,∠COB=∠APB.
(1)求證:PB是⊙O的切線;
(2)當(dāng)OB=3,PA=6時,求MB,MC的長.
考點: 切線的判定與性質(zhì).
分析: (1)根據(jù)切線的性質(zhì),可得∠MAP=90°,根據(jù)直角三角形的性質(zhì),可得∠P+M=90°,根據(jù)余角的性質(zhì),可得∠M+∠MOB=90°,根據(jù)直角三角形的判定,可得∠MOB=90°,根據(jù)切線的判定,可得答案;
(2)根據(jù)相似三角形的判定與性質(zhì),可得 = = ,根據(jù)解方程組,可得答案.
解答: (1)證明:∵PA切⊙O于點A,
∴∠MAP=90°,
∴∠P+M=90°.
∵∠COB=∠APB,
∴∠M+∠MOB=90°,
∴∠MOB=90°,即OB⊥PB,
∵PB經(jīng)過直徑的外端點,
∴PB是⊙O的切線;
(2)∵∠COB=∠APB,∠OBM=∠PAM,
∴△OBM∽△APM,
∴ = = ,
= ①,
= ②
聯(lián)立①②得 ,
解得 ,
當(dāng)OB=3,PA=6時,MB=4,MC=2.
點評: 本題考查了切線的判定與性質(zhì),(1)利用了切線的判定與性質(zhì),直角三角形的判定與性質(zhì),余角的性質(zhì);(2)利用了相似三角形的判定與性質(zhì),解方程組.
30.(2015•廣安)如圖,PB為⊙O的切線,B為切點,過B作OP的垂線BA,垂足為C,交⊙O于點A,連接PA、AO,并延長AO交⊙O于點E,與PB的延長線交于點D.
(1)求證:PA是⊙O的切線;
(2)若 = ,且OC=4,求PA的長和tanD的值.
考點: 切線的判定與性質(zhì);相似三角形的判定與性質(zhì);解直角三角形.
分析: (1)連接OB,先由等腰三角形的三線合一的性質(zhì)可得:OP是線段AB的垂直平分線,進(jìn)而可得:PA=PB,然后證明△PAO≌△PBO,進(jìn)而可得∠PBO=∠PAO,然后根據(jù)切線的性質(zhì)可得∠PBO=90°,進(jìn)而可得:∠PAO=90°,進(jìn)而可證:PA是⊙O的切線;
(2)連接BE,由 = ,且OC=4,可求AC,OA的值,然后根據(jù)射影定理可求PC的值,從而可求OP的值,然后根據(jù)勾股定理可求AP的值;由AC=BC,AO=OE,可得OC是△ABE的中位線,進(jìn)而可得BE∥OP,BE=2OC=8,進(jìn)而可證△DBE∽△DPO,進(jìn)而可得: ,從而求出BD的值,進(jìn)而即可求出tanD的值.
解答: (1)證明:連接OB,則OA=OB,
∵OP⊥AB,
∴AC=BC,
∴OP是AB的垂直平分線,
∴PA=PB,
在△PAO和△PBO中,
∵ ,
∴△PAO≌△PBO(SSS)
∴∠PBO=∠PAO,PB=PA,
∵PB為⊙O的切線,B為切點,
∴∠PBO=90°,
∴∠PAO=90°,
即PA⊥OA,
∴PA是⊙O的切線;
(2)連接BE,
∵ = ,且OC=4,
∴AC=6,
∴AB=12,
在Rt△ACO中,
由勾股定理得:AO= =2 ,
∴AE=2OA=4 ,OB=OA=2 ,
在Rt△APO中,
∵AC⊥OP,
∴AC2=OC•PC,
解得:PC=9,
∴OP=PC+OC=13,
在Rt△APO中,由勾股定理得:AP= =3 ,
∴PB=PA=3 ,
∵AC=BC,OA=OE,
∴OC= BE,OC∥BE,
∴BE=2OC=8,BE∥OP,
∴△DBE∽△DPO,
∴ ,
即 ,
解得:BD= ,
在Rt△OBD中,
tanD= = = .
點評: 本題考查了切線的判定與性質(zhì)以及相似三角形的判定和性質(zhì);能夠通過作輔助線將所求的角轉(zhuǎn)移到相應(yīng)的直角三角形中,是解答此題的關(guān)鍵.要證某線是圓的切線,對于切線的判定:已知此線過圓上某點,連接圓心與這點(即為半徑),再證垂直即可.
本文來自:逍遙右腦記憶 http://m.yy-art.cn/chusan/288106.html
相關(guān)閱讀:2018學(xué)年九年級上期中數(shù)學(xué)試卷(晉中市靈石縣有答案和解釋)