【導(dǎo)語(yǔ)】增加內(nèi)驅(qū)力,從思想上重視高二,從心理上強(qiáng)化高二,使戰(zhàn)勝高考的這個(gè)關(guān)鍵環(huán)節(jié)過(guò)硬起來(lái),是“志存高遠(yuǎn)”這四個(gè)字在高二年級(jí)的全部解釋。逍遙右腦為正在拼搏的你整理了《高二英語(yǔ)知識(shí)點(diǎn)必修一:考點(diǎn)difference》希望你喜歡!
【考點(diǎn)1】含 difference 的短語(yǔ)
、 make a / no / some, etc. difference (to sb / sth) (對(duì)某人/某事物有/沒(méi)有/有些關(guān)系(影響)
、 make a difference between 區(qū)別對(duì)待
、 make some difference to 對(duì)……有些(沒(méi)有)關(guān)系
、 have a difference in character 在性格上有差別
[例句] It makes no difference t0 me which side may loseor win. 誰(shuí)輸準(zhǔn)贏對(duì)我沒(méi)有什么關(guān)系。
She makes a difference between her family and herwork. 她對(duì)工作和家庭是有區(qū)別的。
【考例1】I'm afraid to tell you that the medicine will____ no difference to your illness。so stop taking it.
A. takeB. make
C. getD. do
[考查目標(biāo)] 此題主要考查 difference 的動(dòng)詞搭配問(wèn)題。
[答案與解析]Bmake a difference 是固定搭配。此時(shí)不可用其他動(dòng)詞。
【導(dǎo)語(yǔ)】高二一年,強(qiáng)人將浮出水面,鳥(niǎo)人將沉入海底。 高二重點(diǎn)解決三個(gè)問(wèn)題:一,吃透課本;二,找尋適合自己的學(xué)習(xí)方法;三,總結(jié)自己考試技巧,形成習(xí)慣。為了幫助你的學(xué)習(xí)更上一層樓,逍遙右腦為你準(zhǔn)備了《人教版高二英語(yǔ)知識(shí)點(diǎn)必修一:考點(diǎn)三turn》希望可以幫到你!
【考點(diǎn)3】與turn有關(guān)的短語(yǔ)
、 turn out 生產(chǎn);結(jié)果是
、 turn down 關(guān)小(燈光、音量等);拒絕
、 turn to 轉(zhuǎn)向;求助于
、 turn up 開(kāi)大(燈光、音量等);出現(xiàn),露面
、 turn on / off 打開(kāi)/關(guān)上
、 turn aside 閃開(kāi);放在一邊
、 turn over (使)翻轉(zhuǎn);把某人交給(警方等)
、 turn in 上繳;移交
、 turn against 背叛
、 turn away (from) 轉(zhuǎn)過(guò)臉不看
、 turn round 轉(zhuǎn)過(guò)去
[例句]She turned out six full-length novels in her life.她一生寫(xiě)了6部長(zhǎng)篇小說(shuō)。
The beggar turned out (to be) a thief. 那個(gè)乞丐原來(lái)是個(gè)賊。
That radio is pretty loud. Can you turn it down a little?
收音機(jī)聲音太大,你能開(kāi)小一點(diǎn)嗎?
Many boys expressed their love to Mary, but she
turned them all down. 許多男孩向瑪麗表達(dá)愛(ài)慕之意,但都被她拒絕了。
After he left the university he became a teacher, but later he turned to translation. 他大學(xué)畢業(yè)后當(dāng)了教師,但后來(lái)轉(zhuǎn)而從事翻譯工作。
We often turn to this handbook for information. 我們經(jīng)常查閱這本手冊(cè)尋找資料。
He promised to come, but hasn't turned up yet. 他答應(yīng)來(lái),但尚未到。
When he felt tired, he turned aside (from) his books to listen to the radio. 感到疲勞時(shí),他就把書(shū)放在一邊去聽(tīng)收音機(jī)。
▲ 友情提示:要準(zhǔn)確記住不同的搭配,尤其是一個(gè)短語(yǔ)有多個(gè)意思的。
【考例3】(2004浙江) We wanted to get home before dark, but it didn't quite ____ as planned.
A. make outB. turn out
C. go onD. come up
[考查目標(biāo)] 此題主要考查動(dòng)詞短語(yǔ)的辨義。
[答案與解析]Bmake out有“弄清楚。明白”的惠思;turn out 的意思是“結(jié)果是.證明是”;go on 的意思是“繼續(xù)”!come up 的意思是“過(guò)來(lái),走來(lái)”。題意是:我們?cè)瓉?lái)想在天黑前到家,但結(jié)果并不像預(yù)計(jì)的那樣。
【導(dǎo)語(yǔ)】高二是承上啟下的一年,是成績(jī)分化的分水嶺,成績(jī)往往形成兩極分化:行則扶搖直上,不行則每況愈下。在這一年里學(xué)生必須完成學(xué)習(xí)方式的轉(zhuǎn)變。為了讓你更好的學(xué)習(xí)逍遙右腦為你整理了《高二英語(yǔ)知識(shí)點(diǎn)必修一:考點(diǎn)二fire》希望你喜歡!
① be on fire 在燃燒
、 set fire to sth = set sth on fire 縱火,放火燒
③ catch fire 著火
、 make a fire 生火
、 light a fire 點(diǎn)火
、 put out a fire 滅火
、 play with fire 玩火;冒險(xiǎn)
、 be on fire for 因……而激動(dòng);充滿(mǎn)激情
、 be full of fire 充滿(mǎn)激情
、 under fire 受到攻擊
[例句] The students are on fire for what they're learning in the computer class. 學(xué)生對(duì)電腦課的學(xué)習(xí)內(nèi)容充滿(mǎn)激情。
The boy is full of fire. 這孩子充滿(mǎn)熱情。
The grass caught fire.a(chǎn)nd the grass was on fire for a
short time. 草燃著了,草燒了一會(huì)兒。
He who plays with fire gets burned. 玩火者必*(諺語(yǔ))。
▲辨析: be on fire 表示狀態(tài)。而 catch fire 則表示動(dòng)作-其完成時(shí)不可和段時(shí)間狀語(yǔ)連用。
【考例2】(2004 全國(guó)卷II) The forest guards often findcampfires that have not been ____ completely.
A. turned downB. put out
C. put awayD. turned over
[考查目標(biāo)] 此題主要考查動(dòng)詞短語(yǔ)辨義。
[答案與解析]Bturn down是“調(diào)低。拒絕”的意思;put out是“熄滅,生產(chǎn),伸出”的意思;put away是“收拾”的意思;turn over是“翻過(guò)來(lái)”的意思。
【導(dǎo)語(yǔ)】直面高二的挑戰(zhàn),認(rèn)清高二的自己,明確高二的目標(biāo),意義重大。因?yàn),高二的這個(gè)岔路口,分出的是漸行漸遠(yuǎn)的兩條路,指向的是人生意義上的兩個(gè)截然相反的階段性終端。逍遙右腦為正在奮斗的你整理了《高二數(shù)學(xué)必修五知識(shí)點(diǎn):排列組合公式》希望你喜歡!
排列P------和順序有關(guān)
組合C-------不牽涉到順序的問(wèn)題
排列分順序,組合不分
例如把5本不同的書(shū)分給3個(gè)人,有幾種分法."排列"
把5本書(shū)分給3個(gè)人,有幾種分法"組合"
1.排列及計(jì)算公式
從n個(gè)不同元素中,任取m(m≤n)個(gè)元素按照一定的順序排成一列,叫做從n個(gè)不同元素中取出m個(gè)元素的一個(gè)排列;從n個(gè)不同元素中取出m(m≤n)個(gè)元素的所有排列的個(gè)數(shù),叫做從n個(gè)不同元素中取出m個(gè)元素的排列數(shù),用符號(hào)p(n,m)表示.
p(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)!(規(guī)定0!=1).
2.組合及計(jì)算公式
從n個(gè)不同元素中,任取m(m≤n)個(gè)元素并成一組,叫做從n個(gè)不同元素中取出m個(gè)元素的一個(gè)組合;從n個(gè)不同元素中取出m(m≤n)個(gè)元素的所有組合的個(gè)數(shù),叫做從n個(gè)不同元素中取出m個(gè)元素的組合數(shù).用符號(hào)
c(n,m)表示.
c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m);
3.其他排列與組合公式
從n個(gè)元素中取出r個(gè)元素的循環(huán)排列數(shù)=p(n,r)/r=n!/r(n-r)!.
n個(gè)元素被分成k類(lèi),每類(lèi)的個(gè)數(shù)分別是n1,n2,...nk這n個(gè)元素的全排列數(shù)為
n!/(n1!*n2!*...*nk!).
k類(lèi)元素,每類(lèi)的個(gè)數(shù)無(wú)限,從中取出m個(gè)元素的組合數(shù)為c(m+k-1,m).
排列(Pnm(n為下標(biāo),m為上標(biāo)))
Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)。ㄗⅲ!是階乘符號(hào));Pnn(兩個(gè)n分別為上標(biāo)和下標(biāo))=n;0!=1;Pn1(n為下標(biāo)1為上標(biāo))=n
組合(Cnm(n為下標(biāo),m為上標(biāo)))
Cnm=Pnm/Pmm;Cnm=n!/m。╪-m)。籆nn(兩個(gè)n分別為上標(biāo)和下標(biāo))=1;Cn1(n為下標(biāo)1為上標(biāo))=n;Cnm=Cnn-m
2008-07-0813:30
公式P是指排列,從N個(gè)元素取R個(gè)進(jìn)行排列。公式C是指組合,從N個(gè)元素取R個(gè),不進(jìn)行排列。N-元素的總個(gè)數(shù)R參與選擇的元素個(gè)數(shù)!-階乘,如9。9*8*7*6*5*4*3*2*1
從N倒數(shù)r個(gè),表達(dá)式應(yīng)該為n*(n-1)*(n-2)..(n-r+1);
因?yàn)閺膎到(n-r+1)個(gè)數(shù)為n-(n-r+1)=r
舉例:
Q1:有從1到9共計(jì)9個(gè)號(hào)碼球,請(qǐng)問(wèn),可以組成多少個(gè)三位數(shù)?
A1:123和213是兩個(gè)不同的排列數(shù)。即對(duì)排列順序有要求的,既屬于“排列P”計(jì)算范疇。
上問(wèn)題中,任何一個(gè)號(hào)碼只能用一次,顯然不會(huì)出現(xiàn)988,997之類(lèi)的組合,我們可以這么看,百位數(shù)有9種可能,十位數(shù)則應(yīng)該有9-1種可能,個(gè)位數(shù)則應(yīng)該只有9-1-1種可能,最終共有9*8*7個(gè)三位數(shù)。計(jì)算公式=P(3,9)=9*8*7,(從9倒數(shù)3個(gè)的乘積)
Q2:有從1到9共計(jì)9個(gè)號(hào)碼球,請(qǐng)問(wèn),如果三個(gè)一組,代表“三國(guó)聯(lián)盟”,可以組合成多少個(gè)“三國(guó)聯(lián)盟”?
A2:213組合和312組合,代表同一個(gè)組合,只要有三個(gè)號(hào)碼球在一起即可。即不要求順序的,屬于“組合C”計(jì)算范疇。
上問(wèn)題中,將所有的包括排列數(shù)的個(gè)數(shù)去除掉屬于重復(fù)的個(gè)數(shù)即為最終組合數(shù)C(3,9)=9*8*7/3*2*1
排列、組合的概念和公式典型例題分析
例1設(shè)有3名學(xué)生和4個(gè)課外小組.(1)每名學(xué)生都只參加一個(gè)課外小組;(2)每名學(xué)生都只參加一個(gè)課外小組,而且每個(gè)小組至多有一名學(xué)生參加.各有多少種不同方法?
解(1)由于每名學(xué)生都可以參加4個(gè)課外小組中的任何一個(gè),而不限制每個(gè)課外小組的人數(shù),因此共有種不同方法.
。2)由于每名學(xué)生都只參加一個(gè)課外小組,而且每個(gè)小組至多有一名學(xué)生參加,因此共有種不同方法.
點(diǎn)評(píng)由于要讓3名學(xué)生逐個(gè)選擇課外小組,故兩問(wèn)都用乘法原理進(jìn)行計(jì)算.
例2排成一行,其中不排,不排第二,不排第三,不排第四的不同排法共有多少種?
解依題意,符合要求的排法可分為個(gè)排、、中的某一個(gè),共3類(lèi),每一類(lèi)中不同排法可采用畫(huà)“樹(shù)圖”的方式逐一排出:
∴符合題意的不同排法共有9種.
點(diǎn)評(píng)按照分“類(lèi)”的思路,本題應(yīng)用了加法原理.為把握不同排法的規(guī)律,“樹(shù)圖”是一種具有直觀形象的有效做法,也是解決計(jì)數(shù)問(wèn)題的一種數(shù)學(xué)模型.
例3判斷下列問(wèn)題是排列問(wèn)題還是組合問(wèn)題?并計(jì)算出結(jié)果.
。1)高三年級(jí)學(xué)生會(huì)有11人:①每?jī)扇嘶ネㄒ环庑,共通了多少封信?②每(jī)扇嘶ノ樟艘淮问,共握了多少次手?/P>
。2)高二年級(jí)數(shù)學(xué)課外小組共10人:①?gòu)闹羞x一名正組長(zhǎng)和一名副組長(zhǎng),共有多少種不同的選法?②從中選2名參加省數(shù)學(xué)競(jìng)賽,有多少種不同的選法?
。3)有2,3,5,7,11,13,17,19八個(gè)質(zhì)數(shù):①?gòu)闹腥稳蓚(gè)數(shù)求它們的商可以有多少種不同的商?②從中任取兩個(gè)求它的積,可以得到多少個(gè)不同的積?
。4)有8盆花:①?gòu)闹羞x出2盆分別給甲乙兩人每人一盆,有多少種不同的選法?②從中選出2盆放在教室有多少種不同的選法?
分析(1)①由于每人互通一封信,甲給乙的信與乙給甲的信是不同的兩封信,所以與順序有關(guān)是排列;②由于每?jī)扇嘶ノ找淮问,甲與乙握手,乙與甲握手是同一次握手,與順序無(wú)關(guān),所以是組合問(wèn)題.其他類(lèi)似分析.
。1)①是排列問(wèn)題,共用了封信;②是組合問(wèn)題,共需握手(次).
。2)①是排列問(wèn)題,共有(種)不同的選法;②是組合問(wèn)題,共有種不同的選法.
。3)①是排列問(wèn)題,共有種不同的商;②是組合問(wèn)題,共有種不同的積.
。4)①是排列問(wèn)題,共有種不同的選法;②是組合問(wèn)題,共有種不同的選法.
例4證明.
證明左式
右式.
∴等式成立.
點(diǎn)評(píng)這是一個(gè)排列數(shù)等式的證明問(wèn)題,選用階乘之商的形式,并利用階乘的性質(zhì),可使變形過(guò)程得以簡(jiǎn)化.
例5化簡(jiǎn).
解法一原式
解法二原式
點(diǎn)評(píng)解法一選用了組合數(shù)公式的階乘形式,并利用階乘的性質(zhì);解法二選用了組合數(shù)的兩個(gè)性質(zhì),都使變形過(guò)程得以簡(jiǎn)化.
例6解方程:(1);(2).
解(1)原方程
解得.
。2)原方程可變?yōu)?/P>
∵,,
∴原方程可化為.
即,解得
【導(dǎo)語(yǔ)】高二時(shí)孤身奮斗的階段,是一個(gè)與寂寞為伍的階段,是一個(gè)耐力、意志、自控力比拚的階段。但它同時(shí)是一個(gè)厚實(shí)莊重的階段。由此可見(jiàn),高二是高中三年的關(guān)鍵,也是最難把握的一年。為了幫你把握這個(gè)重要階段,逍遙右腦整理了《高二數(shù)學(xué)必修四十五個(gè)重要知識(shí)點(diǎn)》希望對(duì)你有幫助!
一、集合、簡(jiǎn)易邏輯(14課時(shí),8個(gè))1.集合;2.子集;3.補(bǔ)集;4.交集;5.并集;6.邏輯連結(jié)詞;7.四種命題;8.充要條件.
二、函數(shù)(30課時(shí),12個(gè))1.映射;2.函數(shù);3.函數(shù)的單調(diào)性;4.反函數(shù);5.互為反函數(shù)的函數(shù)圖象間的關(guān)系;6.指數(shù)概念的擴(kuò)充;7.有理指數(shù)冪的運(yùn)算;8.指數(shù)函數(shù);9.對(duì)數(shù);10.對(duì)數(shù)的運(yùn)算性質(zhì);11.對(duì)數(shù)函數(shù).12.函數(shù)的應(yīng)用舉例.
三、數(shù)列(12課時(shí),5個(gè))1.數(shù)列;2.等差數(shù)列及其通項(xiàng)公式;3.等差數(shù)列前n項(xiàng)和公式;4.等比數(shù)列及其通頂公式;5.等比數(shù)列前n項(xiàng)和公式.
四、三角函數(shù)(46課時(shí)17個(gè))1.角的概念的推廣;2.弧度制;3.任意角的三角函數(shù);4,單位圓中的三角函數(shù)線;5.同角三角函數(shù)的基本關(guān)系式;6.正弦、余弦的誘導(dǎo)公式’7.兩角和與差的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函數(shù)、余弦函數(shù)的圖象和性質(zhì);10.周期函數(shù);11.函數(shù)的奇偶性;12.函數(shù)的圖象;13.正切函數(shù)的圖象和性質(zhì);14.已知三角函數(shù)值求角;15.正弦定理;16余弦定理;17斜三角形解法舉例.
五、平面向量(12課時(shí),8個(gè))1.向量2.向量的加法與減法3.實(shí)數(shù)與向量的積;4.平面向量的坐標(biāo)表示;5.線段的定比分點(diǎn);6.平面向量的數(shù)量積;7.平面兩點(diǎn)間的距離;8.平移.
六、不等式(22課時(shí),5個(gè))1.不等式;2.不等式的基本性質(zhì);3.不等式的證明;4.不等式的解法;5.含絕對(duì)值的不等式.
七、直線和圓的方程(22課時(shí),12個(gè))1.直線的傾斜角和斜率;2.直線方程的點(diǎn)斜式和兩點(diǎn)式;3.直線方程的一般式;4.兩條直線平行與垂直的條件;5.兩條直線的交角;6.點(diǎn)到直線的距離;7.用二元一次不等式表示平面區(qū)域;8.簡(jiǎn)單線性規(guī)劃問(wèn)題.9.曲線與方程的概念;10.由已知條件列出曲線方程;11.圓的標(biāo)準(zhǔn)方程和一般方程;12.圓的參數(shù)方程.
八、圓錐曲線(18課時(shí),7個(gè))1橢圓及其標(biāo)準(zhǔn)方程;2.橢圓的簡(jiǎn)單幾何性質(zhì);3.橢圓的參數(shù)方程;4.雙曲線及其標(biāo)準(zhǔn)方程;5.雙曲線的簡(jiǎn)單幾何性質(zhì);6.拋物線及其標(biāo)準(zhǔn)方程;7.拋物線的簡(jiǎn)單幾何性質(zhì).
九、(B)直線、平面、簡(jiǎn)單何體(36課時(shí),28個(gè))1.平面及基本性質(zhì);2.平面圖形直觀圖的畫(huà)法;3.平面直線;4.直線和平面平行的判定與性質(zhì);5,直線和平面垂直的判與性質(zhì);6.三垂線定理及其逆定理;7.兩個(gè)平面的位置關(guān)系;8.空間向量及其加法、減法與數(shù)乘;9.空間向量的坐標(biāo)表示;10.空間向量的數(shù)量積;11.直線的方向向量;12.異面直線所成的角;13.異面直線的公垂線;14異面直線的距離;15.直線和平面垂直的性質(zhì);16.平面的法向量;17.點(diǎn)到平面的距離;18.直線和平面所成的角;19.向量在平面內(nèi)的射影;20.平面與平面平行的性質(zhì);21.平行平面間的距離;22.二面角及其平面角;23.兩個(gè)平面垂直的判定和性質(zhì);24.多面體;25.棱柱;26.棱錐;27.正多面體;28.球.
十、排列、組合、二項(xiàng)式定理(18課時(shí),8個(gè))1.分類(lèi)計(jì)數(shù)原理與分步計(jì)數(shù)原理.2.排列;3.排列數(shù)公式’4.組合;5.組合數(shù)公式;6.組合數(shù)的兩個(gè)性質(zhì);7.二項(xiàng)式定理;8.二項(xiàng)展開(kāi)式的性質(zhì).
十一、概率(12課時(shí),5個(gè))1.隨機(jī)事件的概率;2.等可能事件的概率;3.互斥事件有一個(gè)發(fā)生的概率;4.相互獨(dú)立事件同時(shí)發(fā)生的概率;5.獨(dú)立重復(fù)試驗(yàn).選修Ⅱ(24個(gè))
十二、概率與統(tǒng)計(jì)(14課時(shí),6個(gè))1.離散型隨機(jī)變量的分布列;2.離散型隨機(jī)變量的期望值和方差;3.抽樣方法;4.總體分布的估計(jì);5.正態(tài)分布;6.線性回歸.
十三、極限(12課時(shí),6個(gè))1.數(shù)學(xué)歸納法;2.數(shù)學(xué)歸納法應(yīng)用舉例;3.數(shù)列的極限;4.函數(shù)的極限;5.極限的四則運(yùn)算;6.函數(shù)的連續(xù)性.
十四、導(dǎo)數(shù)(18課時(shí),8個(gè))1.導(dǎo)數(shù)的概念;2.導(dǎo)數(shù)的幾何意義;3.幾種常見(jiàn)函數(shù)的導(dǎo)數(shù);4.兩個(gè)函數(shù)的和、差、積、商的導(dǎo)數(shù);5.復(fù)合函數(shù)的導(dǎo)數(shù);6.基本導(dǎo)數(shù)公式;7.利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和極值;8函數(shù)的值和最小值.
十五、復(fù)數(shù)(4課時(shí),4個(gè))1.復(fù)數(shù)的概念;2.復(fù)數(shù)的加法和減法;3.復(fù)數(shù)的乘法和除法答案補(bǔ)充高中數(shù)學(xué)有130個(gè)知識(shí)點(diǎn),從前一份試卷要考查90個(gè)知識(shí)點(diǎn),覆蓋率達(dá)70%左右,而且把這一項(xiàng)作為衡量試卷成功與否的標(biāo)準(zhǔn)之一.這一傳統(tǒng)近年被打破,取而代之的是關(guān)注思維,突出能力,重視思想方法和思維能力的考查.現(xiàn)在的我們學(xué)數(shù)學(xué)比前人幸福。!相信對(duì)你的學(xué)習(xí)會(huì)有幫助的,祝你成功!答案補(bǔ)充一試全國(guó)高中數(shù)*賽的一試競(jìng)賽大綱,完全按照全日制中學(xué)《數(shù)學(xué)教學(xué)大綱》中所規(guī)定的教學(xué)要求和內(nèi)容,即高考所規(guī)定的知識(shí)范圍和方法,在方法的要求上略有提高,其中概率和微積分初步不考。二試1、平面幾何基本要求:掌握初中數(shù)學(xué)競(jìng)賽大綱所確定的所有內(nèi)容。補(bǔ)充要求:面積和面積方法。幾個(gè)重要定理:梅涅勞斯定理、塞瓦定理、托勒密定理、西姆松定理。幾個(gè)重要的極值:到三角形三頂點(diǎn)距離之和最小的點(diǎn)--費(fèi)馬點(diǎn)。到三角形三頂點(diǎn)距離的平方和最小的點(diǎn),重心。三角形內(nèi)到三邊距離之積的點(diǎn),重心。幾何不等式。簡(jiǎn)單的等周問(wèn)題。了解下述定理:在周長(zhǎng)一定的n邊形的集合中,正n邊形的面積。在周長(zhǎng)一定的簡(jiǎn)單閉曲線的集合中,圓的面積。在面積一定的n邊形的集合中,正n邊形的周長(zhǎng)最小。在面積一定的簡(jiǎn)單閉曲線的集合中,圓的周長(zhǎng)最小。幾何中的運(yùn)動(dòng):反射、平移、旋轉(zhuǎn)。復(fù)數(shù)方法、向量方法。平面凸集、凸包及應(yīng)用。答案補(bǔ)充第二數(shù)學(xué)歸納法。遞歸,一階、二階遞歸,特征方程法。函數(shù)迭代,求n次迭代,簡(jiǎn)單的函數(shù)方程。n個(gè)變?cè)钠骄坏仁剑挛鞑坏仁,排序不等式及?yīng)用。復(fù)數(shù)的指數(shù)形式,歐拉公式,棣莫佛定理,單位根,單位根的應(yīng)用。圓排列,有重復(fù)的排列與組合,簡(jiǎn)單的組合恒等式。一元n次方程(多項(xiàng)式)根的個(gè)數(shù),根與系數(shù)的關(guān)系,實(shí)系數(shù)方程虛根成對(duì)定理。簡(jiǎn)單的初等數(shù)論問(wèn)題,除初中大綱中所包括的內(nèi)容外,還應(yīng)包括無(wú)窮遞降法,同余,歐幾里得除法,非負(fù)最小完全剩余類(lèi),高斯函數(shù),費(fèi)馬小定理,歐拉函數(shù),孫子定理,格點(diǎn)及其性質(zhì)。3、立體幾何多面角,多面角的性質(zhì)。三面角、直三面角的基本性質(zhì)。正多面體,歐拉定理。體積證法。截面,會(huì)作截面、表面展開(kāi)圖。4、平面解析幾何直線的法線式,直線的極坐標(biāo)方程,直線束及其應(yīng)用。二元一次不等式表示的區(qū)域。三角形的面積公式。圓錐曲線的切線和法線。圓的冪和根軸。
以上就是“高二數(shù)學(xué)學(xué)習(xí):高二數(shù)學(xué)十五個(gè)重要知識(shí)點(diǎn)”的所有內(nèi)容,希望對(duì)大家有所幫助!
本文來(lái)自:逍遙右腦記憶 http://m.yy-art.cn/gaozhong/1306910.html
相關(guān)閱讀:日常生活中常用的口語(yǔ)句型-5