【導語】高考競爭異常激烈,千軍萬馬爭過獨木橋,秋天到了,而你正以凌厲的步伐邁進這段特別的歲月中。這是一段青澀而又平淡的日子,每個人都隱身于高考,而平淡之中的張力卻只有真正的勇士才可以破譯。為了助你一臂之力,逍遙右腦為你精心準備了《高三數(shù)學必修五《正弦定理和余弦定理》教案》助你金榜題名!
教案【一】
教學準備
教學目標
進一步熟悉正、余弦定理內(nèi)容,能熟練運用余弦定理、正弦定理解答有關(guān)問題,如判斷三角形的形狀,證明三角形中的三角恒等式.
教學重難點
教學重點:熟練運用定理.
教學難點:應(yīng)用正、余弦定理進行邊角關(guān)系的相互轉(zhuǎn)化.
教學過程
一、復習準備:
1.寫出正弦定理、余弦定理及推論等公式.
2.討論各公式所求解的三角形類型.
二、講授新課:
1.教學三角形的解的討論:
、俪鍪纠1:在△ABC中,已知下列條件,解三角形.
分兩組練習→討論:解的個數(shù)情況為何會發(fā)生變化?
②用如下圖示分析解的情況.(A為銳角時)
、诰毩暎涸凇鰽BC中,已知下列條件,判斷三角形的解的情況.
2.教學正弦定理與余弦定理的活用:
①出示例2:在△ABC中,已知sinA∶sinB∶sinC=6∶5∶4,求角的余弦.
分析:已知條件可以如何轉(zhuǎn)化?→引入?yún)?shù)k,設(shè)三邊后利用余弦定理求角.
、诔鍪纠3:在ΔABC中,已知a=7,b=10,c=6,判斷三角形的類型.
分析:由三角形的什么知識可以判別?→求角余弦,由符號進行判斷
③出示例4:已知△ABC中,,試判斷△ABC的形狀.
分析:如何將邊角關(guān)系中的邊化為角?→再思考:又如何將角化為邊?
3.小結(jié):三角形解的情況的討論;判斷三角形類型;邊角關(guān)系如何互化.
三、鞏固練習:
3.作業(yè):教材P11B組1、2題.
教案【二】
一)教材分析
(1)地位和重要性:正、余弦定理是學生學習了平面向量之后要掌握的兩個重要定理,運用這兩個定理可以初步解決幾何及工業(yè)測量等實際問題,是解決有關(guān)三角形問題的有力工具。
(2)重點、難點。
重點:正余弦定理的證明和應(yīng)用
難點:利用向量知識證明定理
(二)教學目標
(1)知識目標:
①要學生掌握正余弦定理的推導過程和內(nèi)容;
、谀軌蜻\用正余弦定理解三角形;
、哿私庀蛄恐R的應(yīng)用。
(2)能力目標:提高學生分析問題、解決問題的能力。
(3)情感目標:使學生領(lǐng)悟到數(shù)學來源于實踐而又作用于實踐,培養(yǎng)學生的學習數(shù)學的興趣。
(三)教學過程
教師的主要作用是調(diào)控課堂,適時引導,引導學生自主發(fā)現(xiàn),自主探究。使學生的綜合能力得到提高。
教學過程分如下幾個環(huán)節(jié):
教學過程課堂引入
1、定理推導
2、證明定理
3、總結(jié)定理
4、歸納小結(jié)
5、反饋練習
6、課堂總結(jié)、布置作業(yè)
具體教學過程如下:
(1)課堂引入:
正余弦定理廣泛應(yīng)用于生產(chǎn)生活的各個領(lǐng)域,如航海,測量天體運行,那正余弦定理解決實際問題的一般步驟是什么呢?
(2)定理的推導。
首先提出問題:RtΔABC中可建立哪些邊角關(guān)系?
目的:首先從學生熟悉的直角三角形中引導學生自己發(fā)現(xiàn)定理內(nèi)容,猜想,再完成一般性的證明,具體環(huán)節(jié)如下:
、僖龑W生從SinA、SinB的表達式中發(fā)現(xiàn)聯(lián)系。
②繼續(xù)引導學生觀察特點,有A邊A角,B邊B角;
、劢又龑В耗苡肅邊C角表示嗎?
、芏蠊膭畈孪耄涸谥苯侨切沃谐闪⒘,對任意三角形成立嗎?
發(fā)現(xiàn)問題比解決問題更重要,我便是讓學生體驗了發(fā)現(xiàn)的過程,從學生熟悉的知識內(nèi)容入手,觀察發(fā)現(xiàn),然后產(chǎn)生猜想,進而完成一般性證明。
這個過程采用了不斷創(chuàng)設(shè)問題,啟發(fā)誘導的教學方法,引導學生自主發(fā)現(xiàn)和探究。
第二步證明定理:
、儆孟蛄糠椒ㄗC明定理:學生不易想到,設(shè)計如下:
問題:如何出現(xiàn)三角函數(shù)做數(shù)量積欲轉(zhuǎn)化到正弦利用誘導公式做直角難點突破
實踐:師生共同完成銳角三角形中定理證明
獨立:學生獨立完成在鈍角三角形中的證明
總結(jié)定理:師生共同對定理進行總結(jié),再認識。
在定理的推導過程中,我注重“重過程、重體驗”培養(yǎng)了學生的創(chuàng)新意識和實踐能力,教育學生獨立嚴謹科學的求學態(tài)度,使情感目標、能力目標得以實現(xiàn)。
在定理總結(jié)之后,教師布置思考題:定理還有沒有其他證法?
通過這樣的思考題,發(fā)散了學生思維,使學生的思維不僅僅禁錮在教師的啟發(fā)誘導之下,符合素質(zhì)教育的要求。
(3)例題設(shè)置。
例1△ABC中,已知c=10,A=45°,C=30°,求b.
(學生口答、教師板書)
設(shè)計意圖:①加深對定理的認識;②提高解決實際問題的能力
例2△ABC中,a=20,b=28,A=40°,求B和C.
例3△ABC中,a=60,b=50,A=38°,求B和C.其中①兩組解,②一組解
例3同時給出兩道題,首先留給學生一定的思考時間,同時讓兩學生板演,以便兩題形成對照、比較。
可能出現(xiàn)的情況:兩個學生都做對,則繼續(xù)為學生提供展示的空間,讓學生來分析看似一樣的條件,為何①二解②一解情況,如果第二同學也做出兩組解,則讓其他學生積極參與評判,發(fā)現(xiàn)問題,找出對策。
設(shè)計意圖:
、僭鰪妼W生對定理靈活運用的能力
②提高分析問題解決問題的能力
、奂ぐl(fā)學生的參與意識,培養(yǎng)學生合作交流、競爭的意識,使學生在相互影響中共同進步。
(4)歸納小結(jié)。
借助多媒體動態(tài)演示:圖表
使學生對于已知兩邊和其中一邊對角,三角形解的情況有一個清晰直觀的認識。之后讓學生對題型進行歸納小結(jié)。
這樣的歸納總結(jié)是通過學生實踐,在新舊知識比照之后形成的,避免了學生的被動學習,抽象記憶,讓學生形成對自我的認同和對社會的責任感。實現(xiàn)本節(jié)課的情感目標。
(5)反饋練習:
練習①△ABC中,已知a=60,b=48,A=36°
、凇鰽BC中,已知a=19,b=29,A=4°
、邸鰽BC中,已知a=60,b=48,A=92°
判斷解的情況。
通過學生形成性的練習,鞏固了對定理的認識和應(yīng)用,也便于教師掌握學情,以為教學的進行作出合理安排。
(6)課堂總結(jié),布置作業(yè)。
本文來自:逍遙右腦記憶 http://m.yy-art.cn/gaozhong/1270010.html
相關(guān)閱讀:高中數(shù)學教學中學生思維能力的培養(yǎng)