2.1 合情推理與演繹推理
學習目標
1. 能利用歸納推理與類比推理進行一些簡單的推理;
2. 掌握演繹推理的基本方法,并能運用它們進行一些簡單的推理;
3. 體會合情推理和演繹推理的區(qū)別與聯(lián)系.
學習過程
一、前準備
復習1:歸納推理是由 到 的推理.
類比推理是由 到 的推理.
合情推理的結論 .
復習2:演繹推理是由 到 的推理.
演繹推理的結論 .
復習3:歸納推理是由 到 的推理.
類比推理是由 到 的推理.
合情推理的結論 .
復習4:演繹推理是由 到 的推理.
演繹推理的結論 .
二、新導學
※ 典型例題
例1 觀察(1)(2)
由以上兩式成立,推廣到一般結論,寫出你的推論.
變式:已知:
通過觀察上述兩等式的規(guī)律,請你寫出一般性的命題,并給出的證明.
例2 在 中,若 ,則 ,則在立體幾何中,給出四面體性質的猜想.
變式:命題“正三角形內任一點到三邊的距離等于常數(shù),”對正四面體是否有類似的結論?
例3:已知等差數(shù)列 的公差為d ,前n項和為 ,有如下性質:
(1) ,
(2)若 ,
則 ,
類比上述性質,在等比數(shù)列 中,寫出類似的性質.
例4 判斷下面的推理是否正確,并用符號表示其中蘊含的推理規(guī)則:已知 是5的倍數(shù),可知或者m+1是5的倍數(shù),或者5m+1是5的倍數(shù);因為5m+1不是5的倍數(shù),所以m+1是5的倍數(shù)。
※ 動手試試
練1.若數(shù)列 的通項公式 ,記 ,試通過計算 的值,推測出
練2.代數(shù)中有乘法公式.:
再以乘法運算繼續(xù)求:
…………
觀察上述結果,你能做出什么猜想?
練3. 若三角形內切圓半徑為r,三邊長為a,b,c,則三角形的面積 ,根據(jù)類比思想,若四面體內切球半徑為R,四個面的面積為 ,則四面體的體積V= .
三、總結提升
※ 學習小結
1. 合情推理 ;結論不一定正確.
2. 演繹推理:由一般到特殊.前提和推理形式正確結論一定正確.
※ 當堂檢測(時量:5分鐘 滿分:10分)計分:
1. 由數(shù)列 ,猜想該數(shù)列的第n項可能是( ).
A. B. C. D.
2.下面四個在平面內成立的結論
①平行于同一直線的兩直線平行
②一條直線如果與兩條平行線中的一條垂直,則必與另一條相交
③垂直于同一直線的兩直線平行
④一條直線如果與兩條平行線中的一條相交,則必與另一條相交
在空間中也成立的為( ).
A.①② B. ③④ C. ②④ D.①③
3.在數(shù)列 中,已知 ,試歸納推理出 .
4. 用演繹推理證明函數(shù) 是增函數(shù)時的大前提是( ).
A.增函數(shù)的定義 B.函數(shù) 滿足增函數(shù)的定義
C.若 ,則 D.若 , 則
5. 設平面內有n條直線 ,其中有且僅有兩條直線互相平行,任意三條直線不過同一點.若用 表示這n條直線交點的個數(shù),則 = ;當n>4時, = (用含n的數(shù)學表達式表示).
后作業(yè)
1.判別下列推理是否正確:
(1)如果不買彩票,那么就不能中獎。因為你買了彩票,所以你一定中獎、
(2)因為正方形的對角線互相平分且相等,所以一個四邊形的對角線互相平分且相等,則此四邊形是正方形。
(3)因為 ,所以
2 證明函數(shù) 在 上是減函數(shù).
3. 數(shù)列 滿足 ,先計算數(shù)列的前4項,再歸納猜想 .
4. 求證:如果一條直線垂直于兩條相交直線,那么此直線垂直于這兩條相交直線所在的平面。
本文來自:逍遙右腦記憶 http://m.yy-art.cn/gaoyi/52409.html
相關閱讀:合情推理與演繹推理導學案