第一章 分式
1 分式及其基本性質(zhì) 分式的分子和分母同時(shí)乘以(或除以)一個(gè)不等于零的整式,分式的只不變
2 分式的運(yùn)算
。1)分式的乘除 乘法法則:分式乘以分式,用分子的積作為積的分子,分母的積作為積的分母 除法法則:分式除以分式,把除式的分子、分母顛倒位置后,與被除式相乘。
(2) 分式的加減 加減法法則:同分母分式相加減,初一,分母不變,把分子相加減; 異分母分式相加減,先通分,變?yōu)橥帜傅姆质,再加減
3 整數(shù)指數(shù)冪的加減乘除法
4 分式方程及其解法
第二章 反比例函數(shù)
1 反比例函數(shù)的表達(dá)式、圖像、性質(zhì)
圖像:雙曲線
表達(dá)式:y=k/x(k 不為0)
性質(zhì):兩支的增減性相同;
2 反比例函數(shù)在實(shí)際問(wèn)題中的應(yīng)用
第三章 勾股定理
1 勾股定理:直角三角形的兩個(gè)直角邊的平方和等于斜邊的平方
2 勾股定理的逆定理:如果一個(gè)三角形中,有兩個(gè)邊的平方和等于第三條邊的平方, 那么這個(gè)三角形是直角三角形。
本文來(lái)自:逍遙右腦記憶 http://m.yy-art.cn/chuer/59354.html
相關(guān)閱讀:初二愛(ài)國(guó)電影觀后感:《暖春》