一、教學要求、
1. 體會冪的意義,會用同底數(shù)冪的性質(zhì)進行計算,并能解決一些實際問題。
2. 會用冪的乘方、積的乘方性質(zhì)進行計算,并能解決一些實際問題。
二、重點、難點:
1. 重點:
(1)同底數(shù)冪的性質(zhì)及其運算。
(2)冪的乘方與積的乘方性質(zhì)的正確、靈活運用。
2. 難點:
(1)同底數(shù)冪的乘法性質(zhì)的靈活運用。
(2)探索冪的乘方、積的乘方兩個性質(zhì)過程中發(fā)展推理能力和有條理的表達能力。
三. 知識要點:
1. 同底數(shù)冪的意義
幾個相同因式a相乘,即 ,記作 ,讀作a的n次冪,其中a叫做底數(shù),n叫做指數(shù)。
同底數(shù)冪是指底數(shù)相同的冪,如: 與 , 與a, 與 , 與 等等。
注意:底數(shù)a可以是任意有理數(shù),也可以是單項式、多項式。
2. 同底數(shù)冪的乘法性質(zhì)
(m,n都是正整數(shù))
這就是說,同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加。
當三個或三個以上同底數(shù)冪相乘時,也具有這一性質(zhì),例如:
(m,n,p都是正整數(shù))
3. 冪的乘方的意義
冪的乘方是指幾個相同的冪相乘,如 是三個 相乘
讀作a的五次冪的三次方, 是n個 相乘,讀作a的m次冪的n次方
4. 冪的乘方性質(zhì)
(m,n都是正整數(shù))
這就是說,冪的乘方,底數(shù)不變,指數(shù)相乘。
注意:(1)不要把冪的乘方性質(zhì)與同底數(shù)冪的乘法性質(zhì)混淆,冪的乘方運算,是轉(zhuǎn)化為指數(shù)的乘法運算(底數(shù)不變);同底數(shù)冪的乘法,是轉(zhuǎn)化為指數(shù)的加法運算(底數(shù)不變)。
(2)此性質(zhì)可逆用: 。
5. 積的乘方的意義
積的乘方是指底數(shù)是乘積形式的乘方,如 等。
(積的乘方的意義)
(乘法交換律,結(jié)合律)
6. 積的乘方的性質(zhì)
(n為正整數(shù))
這就是說,積的乘方,等于把積的每一個因式分別乘方,再把所得的冪相乘。
注意:(1)三個或三個以上的乘方,也具有這一性質(zhì),例如:
(2)此性質(zhì)可以逆用:
四、典型例題
例1. 計算:
(1) (2)
(3) (4)
解:(1)
(2)
(3)
(4)
例2. 已知 ,求下列各式的值。
(1) (2) (3)
分析:此題是同底數(shù)冪的乘法的逆用,將冪拆分成幾個同底數(shù)冪的積。
(1)
(2)
(3)
例3. 計算:
(1)
(2)
解:(1)方法一:
方法二:
(2)
例4. 計算:
(1) (2)
(3) (4)
解:(1)
(2)
(3)
(4)
例5. 解下列各題。
(1)
(2)
(3)
解:(1)
(2)
(3)
例6. 已知 ,求
分析:此題是冪的乘方和積的乘方性質(zhì)的運用,把 看作整體,帶入即可解決問題。
解:
例7. 計算:
(1)
(2)
(3)
分析:此題應該逆用冪的運算性質(zhì):
(1)解:
(2)解:
(3)解:
【模擬試題】(答題時間:40分鐘)
一. 。
1. 的計算結(jié)果是( )
A. B. C. D.
2. 下列運算正確的是( )
A.
B.
C.
D.
3. 若 ,則 等于( )
A. 5B. 6C. D.
4. 所得的結(jié)果是( )
A. B. C. D. 2
5. 若x、y互為相反數(shù),且不等于零,n為正整數(shù),則( )
A. 一定互為相反數(shù)
B. 一定互為相反數(shù)
C. 一定互為相反數(shù)
D. 一定互為相反數(shù)
6. 下列等式中,錯誤的是( )
A. B.
C. D.
7. 成立的條件是( )
A. n為奇數(shù)B. n是正整數(shù)
C. n是偶數(shù)D. n是負數(shù)
8. ,當 時,m等于( )
A. 29B. 3C. 2D. 5
9. 若 ,則 等于( )
A. 12B. 16C. 18D. 216
10. 若n為正整數(shù),且 ,則 的值是( )
A. 833B. 2891C. 3283D. 1225
二. 題。
1. ( )
2.
3. ( )
4. ( )
5. ( )
6. 若 ,(n,y是正整數(shù)),則 ( )
7. ( ), ( )
8. 若 ,則 ( )
9. 一個正方體的邊長是 ,則它的表面積是( )
三. 計算:
(1)
(2)
(3)
(4)
(5)
(6)
四. (1)若 ,且 ,求 的值。
(2)若 ,求 的值。
五. (1)若 ,求 的值。
(2)試判斷 的末位數(shù)是多少?
【試題答案】
一. 。
1. A2. B3. B4. A5. C
6. B7. C8. C9. D10. B
二. 題。
1. 2. 10
3. 4.
5. 6. 3
7. 1,18. 2
9. 72600
三. (1) (2)
(3) (4)
(5) (6)
四. (1)
(2)10
本文來自:逍遙右腦記憶 http://m.yy-art.cn/chuyi/80504.html
相關閱讀: